Skip to content

Rheological Behaviors and Structure Build-Up of 3D Printed Polypropylene- and Polyvinyl-Alcohol-Fiber-Reinforced Calcium-Sulphoaluminate-Cement Composites (2021-01)

10.1016/j.jmrt.2020.12.115

 Chen Mingxu, Yang Lei, Zheng Yan, Li Laibo, Wang Shoude, Huang Yongbo,  Zhao Piqi,  Lu Lingchao,  Cheng Xin
Journal Article - Journal of Materials Research and Technology, Vol. 10, pp. 1402-1414

Abstract

The uncontrollable printed structure and poor toughness of three dimensional (3D) printed cement composites hamper their application in buildings. In this study, the polypropylene (PP) and polyvinyl alcohol (PVA) fibers were introduced into the 3D printed calcium sulphoaluminate cement composites (CSACCs) to achieve the stable shape retention and high mechanical strength by controlling the rheological parameters. Experimental results show that the PP and PVA fibers enlarge the linear viscoelastic region (LVR) and increase the elastic modulus of CSACCs. Moreover, these two fibers clearly increase the yield stress and improve the thixotropy of CSACCs in the fiber content of 0.50e1.25%. The relationship between the rheological parameters and structure deformation is revealed by the radar map, and it indicates that the printed structure deformation is improved by controlling the coupling rheological parameters. Furthermore, both PP and PVA fibers are beneficial to the improvement of toughness in the 3D printed CSACCs, and the optimal contents are 0.75 and 1.00%, respectively. In conclusion, developing the 3D printed fiber-reinforced CSACCs with the controllable rheological parameters is significant for improving the printed structures and toughness, which shows a considerable potential in buildings.

31 References

  1. Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
    Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders
  2. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  3. Chen Mingxu, Guo Xiangyang, Zheng Yan, Li Laibo et al. (2018-11)
    Effect of Tartaric Acid on the Printable, Rheological and Mechanical Properties of 3D Printing Sulphoaluminate Cement-Paste
  4. Chen Mingxu, Li Laibo, Wang Jiaao, Huang Yongbo et al. (2019-10)
    Rheological Parameters and Building Time of 3D Printing Sulphoaluminate-Cement-Paste Modified by Retarder and Diatomite
  5. Chen Mingxu, Li Laibo, Zheng Yan, Zhao Piqi et al. (2018-09)
    Rheological and Mechanical Properties of Admixtures-Modified 3D Printing Sulphoaluminate Cementitious Materials
  6. Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
    Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite
  7. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  8. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
    Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing
  9. Ketel Sabrina, Falzone Gabriel, Wang Bu, Washburn Newell et al. (2018-04)
    A Printability Index for Linking Slurry Rheology to the Geometrical Attributes of 3D Printed Components
  10. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    3D Concrete Printing:
    A Lower-Bound Analytical Model for Buildability-Performance-Quantification
  11. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete
  12. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  13. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  14. Li Zhijian, Wang Li, Ma Guowei (2020-01)
    Mechanical Improvement of Continuous Steel-Micro-Cable-Reinforced Geopolymer Composites for 3D Printing Subjected to Different Loading Conditions
  15. Liu Zhixin, Li Mingyang, Weng Yiwei, Qian Ye et al. (2020-03)
    Modelling- and Parameter-Optimization for Filament-Deformation in 3D Cementitious Material-Printing Using Support-Vector-Machine
  16. Liu Zhixin, Li Mingyang, Weng Yiwei, Wong Teck et al. (2018-12)
    Mixture-Design-Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material-Printing
  17. Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
    Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing
  18. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  19. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  20. Panda Biranchi, Tan Ming (2018-11)
    Rheological Behavior of High-Volume Fly-Ash Mixtures Containing Micro-Silica for Digital Construction Application
  21. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  22. Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
    Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing
  23. Roussel Nicolas, Bessaies-Bey Hela, Kawashima Shiho, Marchon Delphine et al. (2019-08)
    Recent Advances on Yield-Stress and Elasticity of Fresh Cement-Based Materials
  24. Tay Yi, Li Mingyang, Tan Ming (2019-04)
    Effect of Printing Parameters in 3D Concrete Printing:
    Printing Region and Support Structures
  25. Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
    Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing
  26. Xu Jie, Ding Lieyun, Cai Lixiong, Zhang Lichao et al. (2019-04)
    Volume-Forming 3D Concrete Printing Using a Variable-Size Square Nozzle
  27. Xu Jie, Ding Lieyun, Love Peter (2017-01)
    Digital Reproduction of Historical Building Ornamental Components:
    From 3D Scanning to 3D Printing
  28. Yuan Qiang, Li Zemin, Zhou Dajun, Huang Tingjie et al. (2019-08)
    A Feasible Method for Measuring the Buildability of Fresh 3D Printing Mortar
  29. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
  30. Zhou Xiangming, Li Zongjin, Fan Mizi, Chen Huapeng (2013-01)
    Rheology of Semi-Solid Fresh Cement-Pastes and Mortars in Orifice-Extrusion
  31. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction

48 Citations

  1. Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
    Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
    A Comprehensive Review
  2. Talukdar A., Belek Fialho Teixeira Müge, Fawzia Sabrina, Zahra Tatheer et al. (2026-01)
    Investigation on the Fresh and Mechanical Properties of Low Carbon 3D Printed Concrete Incorporating Sugarcane Bagasse Ash and Microfibers
  3. Huang Bo, Liu Chang, Sun Junbo, Wang Yufei et al. (2025-12)
    Optimized Synergy of Fiberglass Mesh and PP Fibers-Modified Structural Adhesive for Enhanced Mechanical and Microstructural Performance in 3D Printing Concrete
  4. Liu Xuelin, Kong Jiafeng, Chen Yidong, Wang Liang et al. (2025-12)
    Rheology and Printability Control of Low-Carbon 3D-Printed Cementitious Materials via Circular Use of Recycled Concrete Powder
  5. Cai Xianhuan, Chen Fan, Zhao Zhihui, Xiao Peng et al. (2025-12)
    Impact of Early Particle Characteristics on Rheology and Buildability in 3D-Printed Magnesium Silicon Potassium Phosphate Cement Incorporating Fly Ash
  6. Liu Xianda, Sun Junbo, Chen Hui, Liu Chang et al. (2025-11)
    3D Printed Concrete with Red Mud Incorporation:
    Influence of Red Mud Manufacturing Procedures on Mechanical Properties at Elevated Temperatures
  7. Chen Wenguang, Yu Jie, Ye Junhong, Yu Jiangtao et al. (2025-11)
    3D Printed High-Performance Fiber-Reinforced Cementitious Composites:
    Fresh, Mechanical, and Microstructural Properties
  8. Oulkhir Fatima, Akhrif Iatimad, Jai Mostapha, Rihani Nadir (2025-07)
    Clay and Alginate-Based Mixtures 3D Printing:
    A Numerical Procedure for Shape Stability and Buildability Assessment
  9. Xia Zhenjiang, Geng Jian, Zhou Zhijie, Liu Genjin (2025-01)
    Comparative Analysis of Polypropylene, Basalt, and Steel Fibers in 3D Printed Concrete:
    Effects on Flowability, Printabiliy, Rheology, and Mechanical Performance
  10. Maroszek Marcin, Rudziewicz Magdalena, Hutyra Adam, Dziura Paweł et al. (2024-12)
    Evaluation of 3D Concrete Printing Extrusion-Efficiency
  11. Wang Qingwei, Han Song, Liu Qi, Yang Junhao et al. (2024-12)
    Research on the 3D Printing Process and Filament Shape of Cementitious Materials in Low Gravity
  12. Luo Surong, Jin Wenhao, Wu Weihong, Zhang Kaijian (2024-11)
    Rheological and Mechanical Properties of Polyformaldehyde-Fiber-Reinforced 3D Printed High-Strength Concrete with the Addition of Fly-Ash
  13. Liu Xuelin, Sheng Haitao, Feng Binqing, Zhao Piqi et al. (2024-09)
    Effect of Potassium and Sodium-Based Electrolyzed Water on the Rheological Properties and Structural Build-Up of 3D Printed Cement Composites
  14. Han Kang, Gu Fei, Yang Huashan, Tian Xinchen et al. (2024-09)
    PVA-Fiber-Reinforced Red Mud-Based Geopolymer for 3D Printing:
    Printability, Mechanical Properties and Microanalysis
  15. Gao Jianhao, Wang Chaofeng, Li Jiaqi, Chu S. (2024-09)
    Data-Driven Rheological-Model for 3D Printable Concrete
  16. Yang Rijiao, Xu Chengji, Lan Yan, Qiu Yue et al. (2024-08)
    Near Pixel-Level Characterisation of Micro-Fibers in 3D Printed Cementitious Composites and Migration Mechanisms Using a Novel Iterative Method
  17. Yang Chao, Xu Xinglong, Lei Zuxiang, Sun Junbo et al. (2024-06)
    Enhancing Mechanical Properties of Three-Dimensional Concrete at Elevated Temperatures Through Recycled Ceramic-Powder Treatment Methods
  18. Li Haodao, Wei Jingjie, Khayat Kamal (2024-06)
    3D Printing of Fiber-Reinforced Calcined Clay-Limestone-Based Cementitious Materials:
    From Mixture Design to Printability Evaluation
  19. Mohamed Ibrahim, Senthil Kumar (2024-05)
    3D Printed Concrete Using Portland-Pozzolana-Cement:
    Fly-Ash-Based
  20. Luo Surong, Li Wenqiang, Wang Dehui (2024-05)
    Study on Bending Performance of 3D Printed PVA-Fiber-Reinforced Cement-Based Material
  21. Gao Huaxing, Jin Lang, Chen Yuxuan, Chen Qian et al. (2024-05)
    Rheological Behavior of 3D Printed Concrete:
    Influential Factors and Printability Prediction Scheme
  22. Zhou Boyu, Zhang Mo, Ma Guowei (2024-05)
    An Experimental Study on 3D Printed Concrete Reinforced with Fibers Recycled from Wind Turbine Blades
  23. Bodur Burak, Mecit Işık Muhammet, Benli Ahmet, Bayrak Barış et al. (2024-05)
    Durability of Green Rubberized 3D Printed Lightweight Cement Composites Reinforced with Micro-Attapulgite and Micro-Steel-Fibers:
    Printability and Environmental Perspective
  24. Chen Mingxu, Xu Jiabin, Yuan Lianwang, Zhao Piqi et al. (2024-03)
    Use of Creep and Recovery-Protocol to Assess the Printability of Fiber-Reinforced 3D Printed White-Portland-Cement Composites
  25. Liu Xinhao, Hu Jiajun, Guo Xiaolu (2024-03)
    Printability and Inter-Layer Bonding Property of 3D Printed Fiber-Reinforced Geopolymer
  26. Gamage Kumari, Fawzia Sabrina, Zahra Tatheer, Teixeira Muge et al. (2024-02)
    Advancement in Sustainable 3D Concrete Printing:
    A Review on Materials, Challenges, and Current Progress in Australia
  27. Alyami Mana, Khan Majid, Javed Muhammad, Ali Mujahid et al. (2023-12)
    Application of Metaheuristic Optimization Algorithms in Predicting the Compressive Strength of 3D Printed Fiber-Reinforced Concrete
  28. Alyami Mana, Khan Majid, Fawad Muhammad, Nawahz R. et al. (2023-11)
    Predictive Modeling for Compressive Strength of 3D Printed Fiber-Reinforced Concrete Using Machine Learning Algorithms
  29. Gao Huaxing, Chen Yuxuan, Chen Qian, Yu Qingliang (2023-11)
    Thermal and Mechanical Performance of 3D Printing Functionally Graded Concrete:
    The Role of SAC on the Rheology and Phase Evolution of 3DPC
  30. Overmeir Anne, Šavija Branko, Bos Freek, Schlangen Erik (2023-09)
    Effects of 3D Concrete Printing Phases on the Mechanical Performance of Printable Strain-Hardening Cementitious Composites
  31. Sukontasukkul Piti, Maho Buchit, Komkham Sila, Pianfuengfoo Satharat et al. (2023-07)
    Precise Determination of Initial Printable Time for Cement Mortar 3D Printing Using a Derivative Method
  32. Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
    Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
    A Detailed Review
  33. Rajeev Pathmanathan, Ramesh Akilesh, Navaratnam Satheeskumar, Sanjayan Jay (2023-04)
    Using Fiber Recovered from Face Mask Waste to Improve Printability in 3D Concrete Printing
  34. Ramezani Amir, Modaresi Shahriar, Dashti Pooria, Givkashi Mohammad et al. (2023-04)
    Effects of Different Types of Fibers on Fresh and Hardened Properties of Cement and Geopolymer-Based 3D Printed Mixtures:
    A Review
  35. Uddin Md, Mahamoudou Faharidine, Deng Boyu, Elobaid Musa Moneef et al. (2023-03)
    Prediction of Rheological Parameters of 3D Printed Polypropylene-Fiber-Reinforced Concrete by Machine Learning
  36. Giridhar Greeshma, Prem Prabhat, Kumar Shankar (2023-01)
    Development of Concrete Mixes for 3D Printing Using Simple Tools and Techniques
  37. İlcan Hüseyin, Şahin Oğuzhan, Kul Anil, Ozcelikci Emircan et al. (2022-12)
    Rheological Property and Extrudability Performance-Assessment of Construction and Demolition Waste-Based Geopolymer Mortars with Varied Testing Protocols
  38. Zhou Yiyi, Jiang Dan, Sharma Rahul, Xie Yi et al. (2022-11)
    Enhancement of 3D Printed Cementitious Composite by Short Fibers:
    A Review
  39. Kan Deyuan, Liu Guifeng, Cao Shuang, Chen Zhengfa et al. (2022-11)
    Mechanical Properties and Pore-Structure of Multi-Walled Carbon-Nano-Tube-Reinforced Reactive Powder-Concrete for Three-Dimensional Printing Manufactured by Material-Extrusion
  40. Zhao Yu, Yang Guang, Zhu Lingli, Ding Yahong et al. (2022-10)
    Effects of Rheological Properties and Printing Speed on Molding Accuracy of 3D Printing Basalt-Fiber Cementitious Materials
  41. Liu Qiang, Jiang Quan, Huang Mojia, Xin Jie et al. (2022-10)
    The Fresh and Hardened Properties of 3D Printing Cement-Base Materials with Self-Cleaning Nano-TiO2:
    An Exploratory Study
  42. Yang Rijiao, Zhu Yi, Lan Yan, Zeng Qiang et al. (2022-10)
    Differences in Micro Grain & Fiber-Distributions Between Matrix and Inter-Layer of Cementitious Filaments Affected by Extrusion-Molding
  43. Yuan Qiang, Xie Zonglin, Yao Hao, Huang Tingjie et al. (2022-06)
    Effect of Polyacrylamide on the Workability and Inter-Layer Interface Properties of 3D Printed Cementitious Materials
  44. Jiang Quan, Liu Qiang, Wu Si, Zheng Hong et al. (2022-06)
    Modification Effect of Nano-Silica and Polypropylene-Fiber for Extrusion-Based 3D Printing Concrete:
    Printability and Mechanical Anisotropy
  45. Zhao Zhihui, Chen Mingxu, Jin Yuan, Lu Lingchao et al. (2022-05)
    Rheology-Control Towards 3D Printed Magnesium-Potassium-Phosphate-Cement Composites
  46. Chen Mingxu, Li Haisheng, Yang Lei, Wang Shoude et al. (2022-03)
    Rheology and Shape-Stability-Control of 3D Printed Calcium-Sulphoaluminate-Cement Composites Containing Paper-Milling-Sludge
  47. Zhou Jiehang, Lai Jianzhong, Du Longyu, Wu Kai et al. (2021-12)
    Effect of Directionally Distributed Steel-Fiber on Static and Dynamic Properties of 3D Printed Cementitious Composite
  48. Sun Xiaoyan, Zhou Jiawei, Wang Qun, Shi Jiangpeng et al. (2021-11)
    PVA-Fiber-Reinforced High-Strength Cementitious Composite for 3D Printing:
    Mechanical Properties and Durability

BibTeX
@article{chen_yang_zhen_li.2021.RBaSBUo3PPaPAFRCSCC,
  author            = "Mingxu Chen and Lei Yang and Yan Zheng and Laibo Li and Shoude Wang and Yongbo Huang and Piqi Zhao and Lingchao Lu and Xin Cheng",
  title             = "Rheological Behaviors and Structure Build-Up of 3D Printed Polypropylene- and Polyvinyl-Alcohol-Fiber-Reinforced Calcium-Sulphoaluminate-Cement Composites",
  doi               = "10.1016/j.jmrt.2020.12.115",
  year              = "2021",
  journal           = "Journal of Materials Research and Technology",
  volume            = "10",
  pages             = "1402--1414",
}
Formatted Citation

M. Chen, “Rheological Behaviors and Structure Build-Up of 3D Printed Polypropylene- and Polyvinyl-Alcohol-Fiber-Reinforced Calcium-Sulphoaluminate-Cement Composites”, Journal of Materials Research and Technology, vol. 10, pp. 1402–1414, 2021, doi: 10.1016/j.jmrt.2020.12.115.

Chen, Mingxu, Lei Yang, Yan Zheng, Laibo Li, Shoude Wang, Yongbo Huang, Piqi Zhao, Lingchao Lu, and Xin Cheng. “Rheological Behaviors and Structure Build-Up of 3D Printed Polypropylene- and Polyvinyl-Alcohol-Fiber-Reinforced Calcium-Sulphoaluminate-Cement Composites”. Journal of Materials Research and Technology 10 (2021): 1402–14. https://doi.org/10.1016/j.jmrt.2020.12.115.