Skip to content

Hardening Properties and Microstructure of 3D Printed Engineered Cementitious Composites Based on Limestone-Calcined-Clay-Cement (2024-07)

10.1016/j.cemconcomp.2024.105641

 Wang Yuting, Chen Meng,  Zhang Tong,  Zhang Mingzhong
Journal Article - Cement and Concrete Composites, Vol. 152, No. 105641

Abstract

Comparison of three-dimensional (3D) printing and cast methods on the mechanical properties of cementitious materials is the basis for intelligent construction development. To achieve this, a series of experiments including the uniaxial tensile, compressive, flexural and interlayer bonding tests of mould-cast and 3D printed (3DP) specimens are conducted to investigate the effects of different preparation technologies on the microstructure and hardening properties of limestone calcined clay cement (LC3) based engineered cementitious composites (ECC). Results indicate that the tensile strength and strain capacity of the printed LC3-ECC decrease by 16.6%–22.7 % and 43.3%–54.6 % compared to the cast specimens, while it still possesses a strain capacity of 2 % and multiple cracking behaviour. The compressive and flexural properties of the printed LC3-ECC both show significant anisotropy, the maximum values of which are observed in the Z- and Y- directions, respectively. The interlayer bonding strength increases by 54.3%–91.9 % at 28 d compared to that at 7 d due to the hydration of LC3. The pore structure of the printed LC3-ECC is denser than that of the cast LC3-ECC, with more regular arrangement and finer size of pores. The macro-micro properties correlation analysis proves the better comprehensive performance of printed LC3-ECC relative to casted LC3-ECC, as well as reveals the relationship between pore structure and anisotropy. In terms of material sustainability, 3DP-LC3-ECC has a significant reduction in energy and carbon emissions compared to typical M45-ECC, contributing to the environmental development.

36 References

  1. Aslani Farhad, Dale Ryan, Hamidi Fatemeh, Valizadeh Afsaneh (2022-05)
    Mechanical and Shrinkage Performance of 3D Printed Rubberised Engineered Cementitious Composites
  2. Asprone Domenico, Menna Costantino, Bos Freek, Salet Theo et al. (2018-06)
    Rethinking Reinforcement for Digital Fabrication with Concrete
  3. Bai Meiyan, Wu Yuching, Xiao Jianzhuang, Ding Tao et al. (2023-04)
    Workability and Hardened Properties of 3D Printed Engineered Cementitious Composites Incorporating Recycled Sand and PE-Fibers
  4. Bi Minghao, Tran Jonathan, Xia Lingwei, Ma Guowei et al. (2022-06)
    Topology-Optimization for 3D Concrete Printing with Various Manufacturing-Constraints
  5. Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
    Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture
  6. Chen Yu, He Shan, Zhang Yu, Wan Zhi et al. (2021-08)
    3D Printing of Calcined-Clay-Limestone-Based Cementitious Materials
  7. Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2019-03)
    An Approach to Develop Printable Strain-Hardening Cementitious Composites
  8. Heever Marchant, Plessis Anton, Kruger Jacques, Zijl Gideon (2022-01)
    Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete
  9. Ibrahim Kamoru, Zijl Gideon, Babafemi Adewumi (2023-10)
    Comparative Studies of LC³- and Fly-Ash-Based Blended Binders in Fiber-Reinforced Printed Concrete:
    Rheological and Quasi-Static Mechanical Characteristics
  10. Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
    Test-Methods for 3D Printable Concrete
  11. Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
    An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete
  12. Li Victor, Bos Freek, Yu Kequan, McGee Wesley et al. (2020-04)
    On the Emergence of 3D Printable Engineered, Strain-Hardening Cementitious Composites
  13. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-06)
    Hardened Properties of 3D Printed Concrete with Recycled Coarse Aggregate
  14. Luo Surong, Lin Qian, Xu Wei, Wang Dehui (2023-03)
    Effects of Interval Time and Interfacial Agents on the Mechanical Characteristics of Ultra-High-Toughness Cementitious Composites Under 3D Printed Technology
  15. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  16. Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
    Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing
  17. Overmeir Anne, Figueiredo Stefan, Šavija Branko, Bos Freek et al. (2022-02)
    Design and Analyses of Printable Strain-Hardening Cementitious Composites with Optimized Particle-Size-Distribution
  18. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  19. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  20. Sun Bochao, Zeng Qiang, Wang Dianchao, Zhao Weijian (2022-10)
    Sustainable 3D Printed Mortar with CO2 Pretreated Recycled Fine Aggregates
  21. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  22. Wang Yang, Qiu Liu-Chao, Chen Song-Gui, Liu Yi (2023-12)
    3D Concrete Printing in Air and Under Water:
    A Comparative Study on the Buildability and Inter-Layer Adhesion
  23. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  24. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  25. Xu Nuoyan, Qian Ye (2023-04)
    Effects of Fiber-Volume Fraction, Fiber Length, Water-Binder Ratio, and Nano-Clay Addition on the 3D Printability of Strain-Hardening Cementitious Composites
  26. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
    Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber
  27. Yu Jing, Leung Christopher (2018-09)
    Impact of 3D Printing-Direction on Mechanical Performance of Strain-Hardening Cementitious Composite (SHCC)
  28. Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
    3D Printable Engineered Cementitious Composites:
    Fresh and Hardened Properties
  29. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  30. Zhou Wen, McGee Wesley, Zhu He, Gökçe H. et al. (2022-08)
    Time-Dependent Fresh Properties Characterization of 3D Printing Engineered Cementitious Composites:
    On the Evaluation of Buildability
  31. Zhou Wen, Zhang Yamei, Ma Lei, Li Victor (2022-04)
    Influence of Printing Parameters on 3D Printing Engineered Cementitious Composites
  32. Zhou Wen, Zhu He, Hu Wei-Hsiu, Wollaston Ryan et al. (2024-02)
    Low-Carbon, Expansive Engineered Cementitious Composites (ECC) In the Context of 3D Printing
  33. Zhu Binrong, Pan Jinlong, Li Junrui, Wang Penghui et al. (2022-07)
    Relationship Between Microstructure and Strain-Hardening Behavior of 3D Printed Engineered Cementitious Composites
  34. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction
  35. Zhu Lingli, Yao Jie, Zhao Yu, Ruan Wenqiang et al. (2022-12)
    Effects of Composite Cementation System on Rheological and Working Performances of Fresh 3D Printable Engineered Cementitious Composites
  36. Zhu He, Yu Kequan, McGee Wesley, Ng Tsz et al. (2021-11)
    Limestone-Calcined-Clay-Cement for Three-Dimensional Printed Engineered Cementitious Composites

18 Citations

  1. Taborda-Llano Isabella, Hoyos-Montilla Ary, Asensio Eloy, Guerrero Ana et al. (2025-12)
    Influence of the Construction Process Parameters on the Mechanical Performance and Durability of 3D Printed Concrete:
    A Systematic Review
  2. Cheng Jianhua, Chen Meng, Ge Yulin, Zhang Tong (2025-12)
    Mechanical Behavior and Damage Evolution of 3D-Printed Engineered Cementitious Composites at Elevated Temperatures:
    Insights from Acoustic Emission Characterization
  3. Tulliani Jean-Marc (2025-11)
    Latest Developments in 3D-Printed Engineered Cementitious Composites:
    Technologies, Prospects, and Challenges
  4. Chen Wenguang, Yu Jie, Ye Junhong, Yu Jiangtao et al. (2025-11)
    3D Printed High-Performance Fiber-Reinforced Cementitious Composites:
    Fresh, Mechanical, and Microstructural Properties
  5. Wang Yuting, Chen Meng, Zhang Tong, Zhang Mingzhong (2025-10)
    Influence of Limestone Calcined Clay on the Mechanical Behaviour of 3D Printed Engineered Cementitious Composites
  6. Teng Fei, Yang Minxin, Yu Jie, Weng Yiwei et al. (2025-10)
    Multi-Material 3D Concrete Printing:
    Automated Hybrid Reinforcements Using Textile and Strain-Hardening Cementitious Composites
  7. Delavar Mohammad, Aslani Farhad, Sercombe Tim (2025-10)
    Cracking Behaviour in 3D Concrete Printed Fiber-Reinforced Cementitious Composites:
    A Review
  8. Sun Hou-Qi, Zeng Jun-Jie, Xie Shan-Shan, Xia Jun-Run et al. (2025-09)
    Mechanical and Microstructural Characterization of Interlayer Bonding in Multi-Material 3D-Printed Concrete
  9. Chen Wenguang, Liang Long, Ye Junhong, Liu Lingfei et al. (2025-09)
    Machine Learning-Enabled Performance-Based Design of Three-Dimensional Printed Engineered Cementitious Composites
  10. Sun Yan, Du Guoqiang, Deng Xiaowei, Qian Ye (2025-06)
    Effects of Nozzle Thickness on the Mechanical Properties of 3D Printable Ultra-High Performance Strain-Hardening Cementitious Composites (UHP-SHCC)
  11. Chen Meng, Sun Hao, Wang Yuting, Zhang Tong (2025-05)
    Relationship Between Interfacial Pore Structure and Anisotropic Dynamic Splitting Behaviour of 3D Printed Engineered Cementitious Composites
  12. Chen Meng, Cheng Jianhua, Zhang Tong, Wang Yuting (2025-03)
    Experimental Characterization and Constitutive Modelling of the Anisotropic Dynamic Compressive Behavior of 3D Printed Engineered Cementitious Composites
  13. Chen Wenguang, Liang Long, Zhou Boyang, Ye Junhong et al. (2025-02)
    A Fracture Mechanics Model for Predicting Tensile Strength and Fracture Toughness of 3D Printed Engineered Cementitious Composites
  14. Chen Meng, Yu Kanghao, Zhang Tong, Wang Yuting (2025-01)
    Characterizing and Modelling the Bond-Slip-Behavior of Steel-Bars in 3D Printed Engineered Cementitious Composites
  15. Nan Bo, Qiao Youxin, Leng Junjie, Bai Yikui (2025-01)
    Advancing Structural Reinforcement in 3D Printed Concrete:
    Current Methods, Challenges, and Innovations
  16. Abedi Mohammadmadhi, Waris Muhammad, Alawi Mubarak, Jabri Khalifa et al. (2024-12)
    From Local Earth to Modern Structures:
    A Critical Review of 3D Printed Cement Composites for Sustainable and Efficient Construction
  17. Silvestro Laura, Ribeiro Rodrigo, Navarrete Iván (2024-12)
    Advancements in Low Carbon-Emission Cements for 3D Printing:
    A State-of-the-Art Review
  18. Gyawali Biva, Haghnazar Ramtin, Akula Pavan, Alba Kamran et al. (2024-10)
    A Review on 3D Printing with Clay and Sawdust/Natural Fibers:
    Printability, Rheology, Properties, and Applications

BibTeX
@article{wang_chen_zhan_zhan.2024.HPaMo3PECCBoLCCC,
  author            = "Yuting Wang and Meng Chen and Tong Zhang and Mingzhong Zhang",
  title             = "Hardening Properties and Microstructure of 3D Printed Engineered Cementitious Composites Based on Limestone-Calcined-Clay-Cement",
  doi               = "10.1016/j.cemconcomp.2024.105641",
  year              = "2024",
  journal           = "Cement and Concrete Composites",
  volume            = "152",
  pages             = "105641",
}
Formatted Citation

Y. Wang, M. Chen, T. Zhang and M. Zhang, “Hardening Properties and Microstructure of 3D Printed Engineered Cementitious Composites Based on Limestone-Calcined-Clay-Cement”, Cement and Concrete Composites, vol. 152, p. 105641, 2024, doi: 10.1016/j.cemconcomp.2024.105641.

Wang, Yuting, Meng Chen, Tong Zhang, and Mingzhong Zhang. “Hardening Properties and Microstructure of 3D Printed Engineered Cementitious Composites Based on Limestone-Calcined-Clay-Cement”. Cement and Concrete Composites 152 (2024): 105641. https://doi.org/10.1016/j.cemconcomp.2024.105641.