Development of 3D Printing Sustainable Mortars Based on a Bibliometric Analysis (2021-03)¶
, Schaefer Cecília, , , , , ,
Journal Article - Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Vol. 235, Iss. 6, pp. 1419-1429
Abstract
In construction, three-dimensional concrete printing technology is an innovative method that opens new design possibilities, reducing the construction time process. The incremental material deposition allows organic shapes without formwork, a mandatory constraint in preparatory phases of conventional complex concrete structures. Nowadays, in three-dimensional printing for construction industry, concrete is the most used material due to its workability, extrudability, and pumpability properties favorable for the printing conditions. Hence, this composition still has a poor sustainable efficiency due to the high levels of Portland Cement. In this research, a reduction of this material was studied and experimented searching for a mortar composition with better ecological footprint, with the objective of decreasing the CO2 emissions. A bibliometric analysis was made to study the constituents of a mortar for three-dimensional printing and respective dosage. The knowledge acquired in the analysis of the compositions contributed to the development of mortars with lower Portland Cement content. A mechanical extruder was used to check the extrusion capacity of the developed mortars, and the best compositions are presented.
¶
43 References
- Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction - Avrutis Daniel, Nazari Ali, Sanjayan Jay (2019-02)
Industrial Adoption of 3D Concrete Printing in the Australian Market - Cheikh Khadija, Rémond Sébastien, Khalil Noura, Aouad Georges (2017-04)
Numerical and Experimental Studies of Aggregate-Blocking in Mortar-Extrusion - Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture - Craveiro Flávio, Duarte José, Bártolo Helena, Bartolo Paulo (2019-04)
Additive Manufacturing as an Enabling Technology for Digital Construction:
A Perspective on Construction 4.0 - Gaudillière-Jami Nadja, Duballet Romain, Bouyssou Charles, Mallet Alban et al. (2019-02)
Building Applications Using Lost Formworks Obtained Through Large-Scale Additive Manufacturing of Ultra-High-Performance Concrete - Jo Jun, Jo Byung, Cho Woohyun, Kim Jung-Hoon (2020-03)
Development of a 3D Printer for Concrete Structures:
Laboratory Testing of Cementitious Materials - Kashani Alireza, Ngo Tuan (2017-07)
Optimization of Mixture-Properties for 3D Printing of Geopolymer Concrete - Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
Cementitious Materials for Construction-Scale 3D Printing:
Laboratory Testing of Fresh Printing Mixture - Kazemian Ali, Yuan Xiao, Meier Ryan, Khoshnevis Behrokh (2019-02)
Performance-Based Testing of Portland Cement Concrete for Construction-Scale 3D Printing - Khan Mohammad, Sanchez Florence, Zhou Hongyu (2020-04)
3D Printing of Concrete:
Beyond Horizons - Lafhaj Zoubeir, Rabenantoandro Andry, Moussaoui Soufiane, Dakhli Zakaria et al. (2019-12)
Experimental Approach for Printability-Assessment:
Toward a Practical Decision-Making Framework of Printability for Cementitious Materials - Lim Jian, Panda Biranchi, Pham Quang-Cuong (2018-05)
Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel-Cable-Reinforcement - Lim Jian, Weng Yiwei, Li Mingyang (2018-05)
Effect of Fiber-Reinforced Polymer on Mechanical Performance of 3D Printed Cementitious Material - Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing - Lu Bing, Qian Ye, Li Mingyang, Weng Yiwei et al. (2019-04)
Designing Spray-Based 3D Printable Cementitious Materials with Fly-Ash-Cenosphere and Air-Entraining Agent - Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
A Systematical Review of 3D Printable Cementitious Materials - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Malaeb Zeina, Sakka Fatima, Hamzeh Farook (2019-02)
3D Concrete Printing:
Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups - Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
Hydration- and Rheology-Control of Concrete for Digital Fabrication:
Potential Admixtures and Cement-Chemistry - Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification - Nerella Venkatesh, Mechtcherine Viktor (2019-02)
Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D) - Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction - Özalp Fatih, Yılmaz Halit (2020-03)
Fresh and Hardened Properties of 3D High-Strength Printing Concrete and Its Recent Applications - Panda Biranchi, Mohamed Nisar, Tay Yi, He Lewei et al. (2018-05)
Effects Of Slag Addition On Bond Strength Of 3D Printed Geopolymer Mortar:
An Experimental Investigation - Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
Additive Manufacturing of Geopolymer for Sustainable Built Environment - Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2020-01)
Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nano-Clay and Nucleation-Seeds for 3D Printing - Panda Biranchi, Tan Ming (2018-03)
Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing - Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing - Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing - Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction - Sanjayan Jay, Nematollahi Behzad (2019-02)
3D Concrete Printing for Construction Applications - Tay Yi, Li Mingyang, Tan Ming (2019-04)
Effect of Printing Parameters in 3D Concrete Printing:
Printing Region and Support Structures - Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
3D Printing Trends in Building and Construction Industry:
A Review - Ting Guan, Tay Yi, Qian Ye, Tan Ming (2019-03)
Utilization of Recycled Glass for 3D Concrete Printing:
Rheological and Mechanical Properties - Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
Digital Concrete:
A Review - Weng Yiwei, Li Mingyang, Ruan Shaoqin, Wong Teck et al. (2020-03)
Comparative Economic, Environmental and Productivity-Assessment of a Concrete Bathroom Unit Fabricated Through 3D Printing and a Pre-Cast Approach - Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model - Weng Yiwei, Ruan Shaoqin, Li Mingyang, Mo Liwu et al. (2019-06)
Feasibility Study on Sustainable-Magnesium-Potassium-Phosphate Cement-Paste for 3D Printing - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
A Critical Review of the Use of 3D Printing in the Construction Industry - Yuan Qiang, Li Zemin, Zhou Dajun, Huang Tingjie et al. (2019-08)
A Feasible Method for Measuring the Buildability of Fresh 3D Printing Mortar - Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
Fresh Properties of a Novel 3D Printing Concrete Ink
11 Citations
- Pal Abhipsa, Wan-Wendner Lin (2025-10)
3D Concrete Printing and Infill Patterns of Energy Efficient Structural Wall Elements - Gerges Isabelle, Farraj Faten, Youssef Nicolas, Antczak Emmanuel et al. (2025-07)
Methodologies to Design Optimum 3D Printable Mortar Mix:
A Review - Kaszyńska Maria, Skibicki Szymon (2024-11)
Sustainable Development Approach for 3D Concrete Printing - Jesus Manuel, Ribeiro Elis, Teixeira João, Rangel Bárbara et al. (2024-11)
3D Printed Mortars with Marble-Powder Towards Sustainable Construction - Yasin Mazhar, Siddiqi Zahid, Ur Rehman Atteq, Noshin Sadaf et al. (2024-11)
Innovative Early-Age Mechanical Properties of 3D Printable Mortar Enhanced with SBR-Latex and Kaolin - Jesus Manuel, Teixeira João, Alves Jorge, Pessoa Ana Sofia et al. (2023-10)
Potential Use of Sugarcane-Bagasse-Ash in Cementitious Mortars for 3D Printing - Heywood Kate, Nicholas Paul (2023-06)
Sustainability and 3D Concrete Printing:
Identifying a Need for a More Holistic Approach to Assessing Environmental Impacts - Jesus Manuel, Costa Joana, Teixeira João, Pessoa Ana Sofia et al. (2023-01)
Use of Waste Materials to Reduce Cement and Natural Aggregates in 3D Printing Mortars - Teixeira João, Schaefer Cecília, Rangel Bárbara, Maia Lino et al. (2022-11)
A Road Map to Find in 3D Printing a New Design Plasticity for Construction:
The State of Art - Teixeira João, Schaefer Cecília, Maia Lino, Rangel Bárbara et al. (2022-03)
Influence of Supplementary Cementitious Materials on Fresh Properties of 3D Printable Materials - Guimarães Ana, Delgado João, Lucas Sandra (2021-11)
Thermal and Environmental Benefits of 3D Printing on Building Construction
BibTeX
@article{teix_scha_rang_alve.2021.Do3PSMBoaBA,
author = "João Teixeira and Cecília Ogliari Schaefer and Bárbara Rangel and Jorge Lino Alves and Lino Maia and Sandra Nunes and Rui Neto and Maria Lurdes Costa Lopes",
title = "Development of 3D Printing Sustainable Mortars Based on a Bibliometric Analysis",
doi = "10.1177/1464420721995210",
year = "2021",
journal = "Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications",
volume = "235",
number = "6",
pages = "1419--1429",
}
Formatted Citation
J. Teixeira, “Development of 3D Printing Sustainable Mortars Based on a Bibliometric Analysis”, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 235, no. 6, pp. 1419–1429, 2021, doi: 10.1177/1464420721995210.
Teixeira, João, Cecília Ogliari Schaefer, Bárbara Rangel, Jorge Lino Alves, Lino Maia, Sandra Nunes, Rui Neto, and Maria Lurdes Costa Lopes. “Development of 3D Printing Sustainable Mortars Based on a Bibliometric Analysis”. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 235, no. 6 (2021): 1419–29. https://doi.org/10.1177/1464420721995210.