Skip to content

The Rheological and Mechanical Properties of 3D-Printed Geopolymers (2025-04)

A Review

10.1016/j.cscm.2025.e04679

 Tanyildizi Harun,  Seloglu Maksut, al Bakri Abdullah Mohd, Razak Rafiza,  Mydin Md
Journal Article - Case Studies in Construction Materials, No. e04679

Abstract

Geopolymer has become an alternative binder to cement in recent years. While producing cement, approximately 0.8 tons of CO2 is released to produce one ton of clinker. The cement industry causes about 5% to 8% of the world's greenhouse gases to be released. Therefore, it is necessary to reduce the carbon footprint of the cement industry. Geopolymers are defined as eco-friendly since they have approximately 80% lower CO2 emissions than cement. In addition, studies have been carried out by many researchers in recent years since geopolymers have high strength and durability properties. In the last ten years, three-dimensional (3D) printers, which are a new technology, have been included in the construction sector. 3D printers are preferred because of their lower material consumption, less waste, no need for molds, faster construction, and reducing occupational accidents. Due to these advantages, the rheological and mechanical properties of 3D-printed geopolymer concrete and geopolymer mortar were briefly discussed in this review. This article summarizes the challenges and practical limitations of 3D printed geopolymers and summarizes the innovations to date to provide a theoretical basis for the development of 3D printed geopolymers.

68 References

  1. Ahmed Ghafur (2023-01)
    A Review of 3D Concrete Printing:
    Materials and Process Characterization, Economic Considerations and Environmental Sustainability
  2. Aktürk Büşra, Ertuğrul Onur, Özen Ömer, Oktay Didem et al. (2025-03)
    Influence of Nano-Silica and R-MgO on Rheological Properties, 3D Printability, and Mechanical Properties of One-Part Sodium Carbonate-Activated Slag-Based Mixes
  3. Albar Abdulrahman, Chougan Mehdi, Kheetan Mazen, Swash Mohammad et al. (2020-04)
    Effective Extrusion-Based 3D Printing System Design for Cementitious-Based Materials
  4. Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
    Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders
  5. Al-Qutaifi Sarah, Nazari Ali, Bagheri Ali (2018-07)
    Mechanical Properties of Layered Geopolymer Structures Applicable in Concrete 3D Printing
  6. Assaad Joseph, Hamzeh Farook, Hamad Bilal (2020-05)
    Qualitative Assessment of Interfacial Bonding in 3D Printing Concrete Exposed to Frost-Attack
  7. Baz Bilal, Aouad Georges, Kleib Joelle, Bulteel David et al. (2021-04)
    Durability-Assessment and Micro-Structural Analysis of 3D Printed Concrete Exposed to Sulfuric-Acid Environments
  8. Bester Frederick, Heever Marchant, Kruger Jacques, Zijl Gideon (2020-11)
    Reinforcing Digitally Fabricated Concrete:
    A Systems Approach Review
  9. Bong Shin, Nematollahi Behzad, Xia Ming, Ghaffar Seyed et al. (2022-04)
    Properties of Additively Manufactured Geopolymer Incorporating Mineral-Wollastonite-Micro-Fibers
  10. Bong Shin, Xia Ming, Nematollahi Behzad, Shi Caijun (2021-04)
    Ambient Temperature Cured ‘Just-Add-Water’ Geopolymer for 3D Concrete Printing Applications
  11. Buswell Richard, Silva Wilson, Bos Freek, Schipper Roel et al. (2020-05)
    A Process Classification Framework for Defining and Describing Digital Fabrication with Concrete
  12. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  13. Chen Mingxu, Li Laibo, Zheng Yan, Zhao Piqi et al. (2018-09)
    Rheological and Mechanical Properties of Admixtures-Modified 3D Printing Sulphoaluminate Cementitious Materials
  14. Chen Yuning, Liu Chao, Cao Ruilin, Chen Chun et al. (2022-02)
    Systematical Investigation of Rheological Performance Regarding 3D Printing Process for Alkali-Activated Materials:
    Effect of Precursor Nature
  15. Chougan Mehdi, Ghaffar Seyed, Sikora Paweł, Chung Sang-Yeop et al. (2021-02)
    Investigation of Additive Incorporation on Rheological, Microstructural and Mechanical Properties of 3D Printable Alkali-Activated Materials
  16. Das Arnesh, Song Yu, Mantellato Sara, Wangler Timothy et al. (2022-04)
    Effect of Processing on the Air-Void System of 3D Printed Concrete
  17. Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
    Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
    A Review
  18. Geetha S., Selvakumar M., Lakshmi S. (2021-07)
    3D Concrete Printing Matrix Reinforced with Geogrid
  19. Holt Camille, Edwards Laurie, Keyte Louise, Moghaddam Farzad et al. (2019-02)
    Construction 3D Printing
  20. Huang Xin, Yang Weihao, Song Fangnian, Zou Jiuqun (2022-04)
    Study on the Mechanical Properties of 3D Printing Concrete Layers and the Mechanism of Influence of Printing Parameters
  21. İlcan Hüseyin, Şahin Oğuzhan, Kul Anil, Ozcelikci Emircan et al. (2022-12)
    Rheological Property and Extrudability Performance-Assessment of Construction and Demolition Waste-Based Geopolymer Mortars with Varied Testing Protocols
  22. İlcan Hüseyin, Şahin Oğuzhan, Kul Anil, Yıldırım Gürkan et al. (2022-03)
    Rheological Properties and Compressive Strength of Construction and Demolition Waste-Based Geopolymer Mortars for 3D Printing
  23. Inaty Francois, Baz Bilal, Aouad Georges (2022-07)
    Long-Term Durability-Assessment of 3D Printed Concrete
  24. Jaji Mustapha, Zijl Gideon, Babafemi Adewumi (2024-03)
    Durability and Pore-Structure of Metakaolin-Based 3D Printed Geopolymer Concrete
  25. Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
    Test-Methods for 3D Printable Concrete
  26. Khan Mohd (2020-04)
    Mix Suitable for Concrete 3D Printing:
    A Review
  27. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  28. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  29. Ler Kee-Hong, Ma Chau-Khun, Chin Chee-Long, Ibrahim Izni et al. (2024-08)
    Porosity and Durability Tests on 3D Printing Concrete:
    A Review
  30. Li Zhijian, Wang Li, Ma Guowei (2020-01)
    Mechanical Improvement of Continuous Steel-Micro-Cable-Reinforced Geopolymer Composites for 3D Printing Subjected to Different Loading Conditions
  31. Lim Jian, Panda Biranchi, Pham Quang-Cuong (2018-05)
    Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel-Cable-Reinforcement
  32. Liu Siyu, Lu Bing, Li Hongliang, Pan Zehua et al. (2022-03)
    A Comparative Study on Environmental Performance of 3D Printing and Conventional Casting of Concrete Products with Industrial Wastes
  33. Lv Chun, Shen Hongtao, Liu Jie, Wu Dan et al. (2022-11)
    Properties of 3D Printing Fiber-Reinforced Geopolymers Based on Inter-Layer Bonding and Anisotropy
  34. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  35. Ma Guowei, Li Zhijian, Wang Li, Bai Gang (2018-10)
    Micro-Cable-Reinforced Geopolymer Composite for Extrusion-Based 3D Printing
  36. Ma Guowei, Wang Li (2017-08)
    A Critical Review of Preparation Design and Workability Measurement of Concrete Material for Large-Scale 3D Printing
  37. Ma Guowei, Yan Yufei, Zhang Mo, Sanjayan Jay (2022-05)
    Effect of Steel-Slag on 3D Concrete Printing of Geopolymer with Quaternary Binders
  38. Malaeb Zeina, Sakka Fatima, Hamzeh Farook (2019-02)
    3D Concrete Printing:
    Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups
  39. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  40. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2022-10)
    In-Line Activation of Geopolymer-Slurry for Concrete 3D Printing
  41. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2022-02)
    Set-on-Demand Geopolymer Using Print-Head Mixing for 3D Concrete Printing
  42. Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
    Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction
  43. Nematollahi Behzad, Xia Ming, Bong Shin, Sanjayan Jay (2018-09)
    Hardened Properties of 3D Printable One-Part Geopolymer for Construction Applications
  44. Nerella Venkatesh, Mechtcherine Viktor (2019-02)
    Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D)
  45. Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
    Durability Properties of 3D Printed Concrete
  46. Panda Biranchi, Bhagath Singh Gangapatnam, Unluer Cise, Tan Ming (2019-02)
    Synthesis and Characterization of One-Part Geopolymers for Extrusion-Based 3D Concrete Printing
  47. Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
    Additive Manufacturing of Geopolymer for Sustainable Built Environment
  48. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  49. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  50. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  51. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  52. Qaidi Shaker, Yahia Ammar, Tayeh B., Unis H. et al. (2022-10)
    3D Printed Geopolymer Composites:
    A Review
  53. Şahin Hatice, Mardani Ali (2021-12)
    Assessment of Materials, Design Parameters and Some Properties of 3D Printing Concrete Mixtures:
    A State of the Art Review
  54. Saruhan Vedat, Keskinateş Muhammer, Felekoğlu Burak (2022-04)
    A Comprehensive Review on Fresh State Rheological Properties of Extrusion-Mortars Designed for 3D Printing Applications
  55. Shahmirzadi Mohsen, Gholampour Aliakbar, Kashani Alireza, Ngo Tuan (2021-09)
    Shrinkage Behavior of Cementitious 3D Printing Materials:
    Effect of Temperature and Relative Humidity
  56. Shilar Fatheali, Ganachari Sharanabasava, Patil Veerabhadragouda, Bhojaraja B. et al. (2023-08)
    A Review of 3D Printing of Geopolymer Composites for Structural and Functional Applications
  57. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  58. Suntharalingam Thadshajini, Gatheeshgar Perampalam, Upasiri Irindu, Poologanathan Keerthan et al. (2021-02)
    Numerical Study of Fire and Energy Performance of Innovative Lightweight 3D Printed Concrete Wall-Configurations in Modular Building System
  59. Tanyildizi Harun, Seloglu Maksut, Coskun Ahmet (2024-08)
    The Effect of Nano-Zinc-Oxide on Freeze-Thaw-Resistance of 3D Printed Geopolymer Mortars
  60. Voney Vera, Odaglia Pietro, Brumaud Coralie, Dillenburger Benjamin et al. (2021-02)
    From Casting to 3D Printing Geopolymers:
    A Proof of Concept
  61. Weger Daniel, Kim Heejeong, Talke Daniel, Henke Klaudius et al. (2020-07)
    Lightweight Concrete 3D Printing by Selective Cement-Activation:
    Investigation of Thermal Conductivity, Strength and Water-Distribution
  62. Weng Yiwei, Ruan Shaoqin, Li Mingyang, Mo Liwu et al. (2019-06)
    Feasibility Study on Sustainable-Magnesium-Potassium-Phosphate Cement-Paste for 3D Printing
  63. Yu Shiwei, Xia Ming, Sanjayan Jay, Yang Lin et al. (2021-07)
    Microstructural Characterization of 3D Printed Concrete
  64. Zareiyan Babak, Khoshnevis Behrokh (2017-06)
    Inter-Layer Adhesion and Strength of Structures in Contour Crafting:
    Effects of Aggregate-Size, Extrusion-Rate, and Layer-Thickness
  65. Zareiyan Babak, Khoshnevis Behrokh (2018-05)
    Effects of Mixture Ingredients on Extrudability of Concrete in Contour Crafting
  66. Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2021-02)
    Hardened Properties and Durability of Large-Scale 3D Printed Cement-Based Materials
  67. Zhong Hui, Zhang Mingzhong (2022-02)
    3D Printing Geopolymers:
    A Review
  68. Zhou Longfei, Gou Mifeng, Ji Jiankai, Hou Xinran et al. (2024-02)
    Durability and Hardened Properties of 3D Printed Concrete Containing Bauxite-Tailings

0 Citations

BibTeX
@article{tany_selo_bakr_raza.2025.TRaMPo3PG,
  author            = "Harun Tanyildizi and Maksut Seloglu and Mohd Mustafa al Bakri Abdullah and Rafiza Abdul Razak and Md Azree Othuman Mydin",
  title             = "The Rheological and Mechanical Properties of 3D-Printed Geopolymers: A Review",
  doi               = "10.1016/j.cscm.2025.e04679",
  year              = "2025",
  journal           = "Case Studies in Construction Materials",
  pages             = "e04679",
}
Formatted Citation

H. Tanyildizi, M. Seloglu, M. M. al Bakri Abdullah, R. A. Razak and M. A. O. Mydin, “The Rheological and Mechanical Properties of 3D-Printed Geopolymers: A Review”, Case Studies in Construction Materials, p. e04679, 2025, doi: 10.1016/j.cscm.2025.e04679.

Tanyildizi, Harun, Maksut Seloglu, Mohd Mustafa al Bakri Abdullah, Rafiza Abdul Razak, and Md Azree Othuman Mydin. “The Rheological and Mechanical Properties of 3D-Printed Geopolymers: A Review”. Case Studies in Construction Materials, 2025, e04679. https://doi.org/10.1016/j.cscm.2025.e04679.