Skip to content

Fire Performance Evaluation of 3D-Printed Concrete Walls (2025-03)

A Combined Full-Scale and Numerical Modeling Approach

10.1016/j.jobe.2025.112296

Suphunsaeng Kantawich,  Prasittisopin Lapyote, Pethrung Sirichai,  Pansuk Withit
Journal Article - Journal of Building Engineering, No. 112296

Abstract

3D concrete printing (3DCP) is now being adopted in construction projects worldwide, allowing many benefits from such automated construction. However, existing research has limited its durability evaluation to full-scale testing. Furthermore, the numerical simulation of the 3DCP method is a new research area in the fields of dynamic growth, and many practical questions still remain. This paper presents the findings of full-scale and numerical studies on the fire performance of different 3DCP walls configurations. The effects of the wall thickness, cross-sectional arrangements, and inner cavity area on the insulation fire rating under different fire scenarios were examined. Results indicate that all full-scale specimens tested satisfy the integrity criteria for 3-hour exposure time. Non-load bearing 3DCP showed a better fire insulation performance, whereas 3DCP wall with increased total thickness had better fire resistance. Numerical modeling performed effectively predicts 3DCP wall performance.

40 References

  1. Alabbasi Mohammad, Agkathidis Asterios, Chen Hanmei (2023-01)
    Robotic 3D Printing of Concrete Building Components for Residential Buildings in Saudi Arabia
  2. Bard Joshua, Cupkova Dana, Washburn Newell, Zeglin Garth (2018-09)
    Thermally Informed Robotic Topologies:
    Profile 3D Printing for the Robotic Construction of Concrete Panels, Thermally Tuned Through High-Resolution Surface Geometry
  3. Bazli Milad, Ashrafi Hamed, Rajabipour Ali, Kutay Cat (2023-02)
    3D Printing for Remote Housing:
    Benefits and Challenges
  4. Borg Costanzi Christopher, Ahmed Zeeshan, Schipper Roel, Bos Freek et al. (2018-07)
    3D Printing Concrete on Temporary Surfaces:
    The Design and Fabrication of a Concrete Shell Structure
  5. Carneau Paul, Mesnil Romain, Roussel Nicolas, Baverel Olivier (2020-04)
    Additive Manufacturing of Cantilever:
    From Masonry to Concrete 3D Printing
  6. Chamatete Kunda, Yalçınkaya Çağlar (2024-03)
    Numerical Evaluation on Thermal Performance of 3D Printed Concrete Walls:
    The Effects of Lattice-Type, Filament-Width and Granular-Filling-Material
  7. Cicione Antonio, Kruger Jacques, Walls Richard, Zijl Gideon (2020-05)
    An Experimental Study of the Behavior of 3D Printed Concrete at Elevated Temperatures
  8. Friese Danny, Hahn Lars, Le Xuan Hung, Mersch Johannes et al. (2023-10)
    Robot-Assisted Manufacturing Technology for 3D Non-Metallic Reinforcement Structures in the Construction Applications
  9. Furet Benoît, Poullain Philippe, Garnier Sébastien (2019-04)
    3D Printing for Construction Based on a Complex Wall of Polymer-Foam and Concrete
  10. He Lewei, Pan Jiahui, Hee Yu, Chen Hao et al. (2024-09)
    Development of Novel Concave and Convex Trowels for Higher Inter-Layer Strength of 3D Printed Cement-Paste
  11. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    3D Concrete Printing:
    A Lower-Bound Analytical Model for Buildability-Performance-Quantification
  12. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  13. Leschok Matthias, Cheibas Ina, Piccioni Valeria, Seshadri Bharath et al. (2023-05)
    3D Printing Facades:
    Design, Fabrication, and Assessment Methods
  14. Li Zhengrong, Xing Wenjing, Sun Jingting, Feng Xiwen (2022-12)
    Multi-Scale Structural Characteristics and Heat-Moisture Properties of 3D Printed Building Walls:
    A Review
  15. Marais Hannelie, Christen Heidi, Cho Seung, Villiers Wibke et al. (2021-03)
    Computational Assessment of Thermal Performance of 3D Printed Concrete Wall Structures with Cavities
  16. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  17. Nemova Darya, Kotov Evgeny, Andreeva Darya, Khorobrov Svyatoslav et al. (2022-06)
    Experimental Study on the Thermal Performance of 3D Printed Enclosing Structures
  18. Nguyen Vuong, Choudhry Niranjan, Panda Biranchi, Nguyen-Xuan Hung et al. (2021-12)
    Performance of Concrete Beam Reinforced with 3D Printed Bio-Inspired Primitive Scaffold Subjected to Three-Point Bending
  19. Ooms Ticho, Vantyghem Gieljan, Coile Ruben, Corte Wouter (2020-12)
    A Parametric Modelling-Strategy for the Numerical Simulation of 3D Concrete Printing with Complex Geometries
  20. Panda Biranchi, Tan Ming (2018-11)
    Rheological Behavior of High-Volume Fly-Ash Mixtures Containing Micro-Silica for Digital Construction Application
  21. Prasittisopin Lapyote (2024-11)
    How 3D Printing Technology Makes Cities Smarter:
    A Review, Thematic Analysis, and Perspectives
  22. Robayo-Salazar Rafael, Gutiérrez Ruby, Villaquirán-Caicedo Mónica, Delvasto Arjona Silvio (2022-12)
    3D Printing with Cementitious Materials:
    Challenges and Opportunities for the Construction Sector
  23. Sadakorn Wannapol, Prasertsuk Santirak, Prasittisopin Lapyote (2022-12)
    3D Cement Printing:
    DFMA Guideline of Patterned Load-Bearing Walls for Small Residential Units
  24. Sadakorn Wannapol, Prasertsuk Santirak, Prasittisopin Lapyote (2024-06)
    Improving the Structural Efficiency of Textured Three-Dimensional Concrete Printing Wall by Architectural Design
  25. Sakin Mehmet, Kiroglu Yusuf (2017-10)
    3D Printing of Buildings:
    Construction of the Sustainable Houses of the Future by BIM
  26. Shakor Pshtiwan, Nejadi Shami, Paul Gavin, Malek Sardar (2019-01)
    Review of Emerging Additive Manufacturing Technologies in 3D Printing of Cementitious Materials in the Construction Industry
  27. Suntharalingam Thadshajini, Gatheeshgar Perampalam, Upasiri Irindu, Poologanathan Keerthan et al. (2021-06)
    Fire Performance of Innovative 3D Printed Concrete Composite Wall Panels:
    A Numerical Study
  28. Suntharalingam Thadshajini, Upasiri Irindu, Gatheeshgar Perampalam, Poologanathan Keerthan et al. (2021-09)
    Energy Performance of 3D Printed Concrete Walls:
    A Numerical Study
  29. Suntharalingam Thadshajini, Upasiri Irindu, Gatheeshgar Perampalam, Poologanathan Keerthan et al. (2021-07)
    Fire-Resistance of 3D Printed Concrete Composite Wall Panels Exposed to Various Fire Scenarios
  30. Suntharalingam Thadshajini, Upasiri Irindu, Nagaratnam Brabha, Poologanathan Keerthan et al. (2022-01)
    Finite Element Modelling to Predict the Fire Performance of Bio-Inspired 3D Printed Concrete Wall Panels Exposed to Realistic Fire
  31. Wang Li, Jiang Hailong, Li Zhijian, Ma Guowei (2020-02)
    Mechanical Behaviors of 3D Printed Lightweight Concrete Structure with Hollow Section
  32. Wei Ying, Han Song, Yu Shiwei, Chen Ziwei et al. (2024-05)
    Parameter Impact on 3D Concrete Printing from Single to Multi-Layer Stacking
  33. Weng Yiwei, Li Mingyang, Liu Zhixin, Lao Wenxin et al. (2018-12)
    Printability and Fire Performance of a Developed 3D Printable Fiber-Reinforced Cementitious Composites under Elevated Temperatures
  34. Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
    A Critical Review of the Use of 3D Printing in the Construction Industry
  35. Xiao Jianzhuang, Han Nv, Zhang Lihai, Zou Shuai (2021-05)
    Mechanical and Microstructural Evolution of 3D Printed Concrete with Polyethylene-Fiber and Recycled Sand at Elevated Temperatures
  36. Yang Liuhua, Gao Yang, Chen Hui, Jiao Huazhe et al. (2024-04)
    3D Printing Concrete Technology from a Rheology Perspective:
    A Review
  37. Yassin Abdallah, Hamzeh Farook, Sakka Fatima (2019-12)
    Agent-Based Modeling to Optimize Workflow of Robotic Steel and Concrete 3D Printers
  38. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink
  39. Zhao Hongyu, Wang Yufei, Liu Xianda, Wang Xiangyu et al. (2024-08)
    Review on Solid Wastes Incorporated Cementitious Material Using 3D Concrete Printing-Technology
  40. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction

4 Citations

  1. Agegn Adamu, Regassa Yohannes, Angassa Kenatu, Mekonnen Kebede (2026-01)
    Systematic Review on 3D Concrete Printing Technology:
    Breakthroughs and Challenges
  2. Tarhan İsmail, Tarhan Yeşim (2025-09)
    Nonlinear In-Plane Response of 3D-Printed Concrete Walls with Varied Infill Patterns:
    Experimental Mix Design and Numerical Structural Assessment
  3. Banihashemi Saeed, Akbarnezhad Ali, Sheikhkhoshkar Moslem, Haouzi Hind et al. (2025-08)
    3D Printing in Construction:
    Sustainable Technology for Building Industry
  4. Sakhare Vishakha, Khairnar Neha, Dahatonde Ulka, Mashalkar Shilpa (2025-06)
    Review on Sustainability in 3D Concrete Printing:
    Focus on Waste Utilization and Life Cycle Assessment

BibTeX
@article{suph_pras_peth_pans.2025.FPEo3PCW,
  author            = "Kantawich Suphunsaeng and Lapyote Prasittisopin and Sirichai Pethrung and Withit Pansuk",
  title             = "Fire Performance Evaluation of 3D-Printed Concrete Walls: A Combined Full-Scale and Numerical Modeling Approach",
  doi               = "10.1016/j.jobe.2025.112296",
  year              = "2025",
  journal           = "Journal of Building Engineering",
  pages             = "112296",
}
Formatted Citation

K. Suphunsaeng, L. Prasittisopin, S. Pethrung and W. Pansuk, “Fire Performance Evaluation of 3D-Printed Concrete Walls: A Combined Full-Scale and Numerical Modeling Approach”, Journal of Building Engineering, p. 112296, 2025, doi: 10.1016/j.jobe.2025.112296.

Suphunsaeng, Kantawich, Lapyote Prasittisopin, Sirichai Pethrung, and Withit Pansuk. “Fire Performance Evaluation of 3D-Printed Concrete Walls: A Combined Full-Scale and Numerical Modeling Approach”. Journal of Building Engineering, 2025, 112296. https://doi.org/10.1016/j.jobe.2025.112296.