Effect of Potassium and Sodium-Based Electrolyzed Water on the Rheological Properties and Structural Build-Up of 3D Printed Cement Composites (2024-09)¶
Liu Xuelin, Sheng Haitao, Feng Binqing, , Huang Yongbo, Wang Shoude, , ,
Journal Article - Journal of Building Engineering, Vol. 97, No. 110741
Abstract
The uncontrollable printability and structural integrity limit the development and application of 3D printed cement composites. In this study, the potassium and sodium-based electrolyzed water (KEW and NEW) were incorporated into the 3D printed ordinary Portland cement composites (OPCCs) to adjust rheological properties, aiming to improve printability and optimize the printed structure build-up. Experimental results show that the KEW can enhance the elastic modulus and decrease the strain notably as the applied shear stress increases. Compared with tap water (TW), the KEW and NEW increase the static yield stress based on oscillation-shear and creep-recovery protocol, and improve thixotropy. Besides, the structure deformation of 3D printed OPCCs with NEW and KEW decreases from 11.81 % to 8.34 % and 8.22 %, respectively, representing a margin of approximately 29.4 % and 30.4 %. Furthermore, the compressive and flexural strength of 3D printed OPCCs with KEW increases from 25.5 to 29.4 MPa and 3.55 to 4.04 MPa, respectively, benefitting from the lower porosity and higher hydration rate. In conclusion, the incorporation of electrolyzed water into 3D printed OPCCs demonstrates considerable potential, effectively enhancing printability and optimizing structure build-up.
¶
29 References
- Chen Mingxu, Guo Xiangyang, Zheng Yan, Li Laibo et al. (2018-11)
Effect of Tartaric Acid on the Printable, Rheological and Mechanical Properties of 3D Printing Sulphoaluminate Cement-Paste - Chen Mingxu, Li Haisheng, Yang Lei, Wang Shoude et al. (2022-03)
Rheology and Shape-Stability-Control of 3D Printed Calcium-Sulphoaluminate-Cement Composites Containing Paper-Milling-Sludge - Chen Mingxu, Li Laibo, Zheng Yan, Zhao Piqi et al. (2018-09)
Rheological and Mechanical Properties of Admixtures-Modified 3D Printing Sulphoaluminate Cementitious Materials - Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite - Chen Mingxu, Xu Jiabin, Yuan Lianwang, Zhao Piqi et al. (2024-03)
Use of Creep and Recovery-Protocol to Assess the Printability of Fiber-Reinforced 3D Printed White-Portland-Cement Composites - Chen Mingxu, Yang Lei, Zheng Yan, Huang Yongbo et al. (2020-04)
Yield-Stress and Thixotropy-Control of 3D Printed Calcium-Sulfoaluminate Cement Composites with Metakaolin Related to Structural Build-Up - Chen Mingxu, Yang Lei, Zheng Yan, Li Laibo et al. (2021-01)
Rheological Behaviors and Structure Build-Up of 3D Printed Polypropylene- and Polyvinyl-Alcohol-Fiber-Reinforced Calcium-Sulphoaluminate-Cement Composites - Ding Tao, Xiao Jianzhuang, Zou Shuai, Yu Jiangtao (2021-03)
Flexural Properties of 3D Printed Fiber-Reinforced Concrete with Recycled Sand - Gao Huaxing, Chen Yuxuan, Chen Qian, Yu Qingliang (2023-11)
Thermal and Mechanical Performance of 3D Printing Functionally Graded Concrete:
The Role of SAC on the Rheology and Phase Evolution of 3DPC - Harbouz Ilhame, Yahia Ammar, Rozière Emmanuel, Loukili Ahmed (2023-02)
Printing Quality-Control of Cement-Based Materials Under Flow and Rest-Conditions - Heever Marchant, Plessis Anton, Kruger Jacques, Zijl Gideon (2022-01)
Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete - Ketel Sabrina, Falzone Gabriel, Wang Bu, Washburn Newell et al. (2018-04)
A Printability Index for Linking Slurry Rheology to the Geometrical Attributes of 3D Printed Components - Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete - Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete - Liu Yi, Wang Li, Yuan Qiang, Peng Jianwei (2023-09)
Effect of Coarse Aggregate on Printability and Mechanical Properties of 3D Printed Concrete - Mendoza Reales Oscar, Duda Pedro, Silva Emílio, Paiva Maria et al. (2019-06)
Nanosilica-Particles as Structural Buildup Agents for 3D Printing with Portland Cement-Pastes - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2021-01)
Early-Age Hydration, Rheology and Pumping Characteristics of CSA Cement-Based 3D Printable Concrete - Roussel Nicolas, Bessaies-Bey Hela, Kawashima Shiho, Marchon Delphine et al. (2019-08)
Recent Advances on Yield-Stress and Elasticity of Fresh Cement-Based Materials - Rubin Ariane, Quintanilha Lucas, Repette Wellington (2022-11)
Influence of Structuration-Rate, with Hydration-Accelerating Admixture, on the Physical and Mechanical Properties of Concrete for 3D Printing - Tran Mien, Cu Yen, Le Chau (2021-10)
Rheology and Shrinkage of Concrete Using Polypropylene-Fiber for 3D Concrete Printing - Varela Hugo, Barluenga Gonzalo, Perrot Arnaud (2023-07)
Extrusion and Structural Build-Up of 3D Printing Cement-Pastes with Fly-Ash, Nano-Clay and VMAs - Wang Li, Ma Guowei, Liu Tianhao, Buswell Richard et al. (2021-07)
Inter-Layer Reinforcement of 3D Printed Concrete by the In-Process Deposition of U-Nails - Wang Yang, Qiu Liu-Chao, Chen Song-Gui, Liu Yi (2023-12)
3D Concrete Printing in Air and Under Water:
A Comparative Study on the Buildability and Inter-Layer Adhesion - Xu Jiabin, Chen Mingxu, Zhao Zhihui, Li Laibo et al. (2021-01)
Printability and Efflorescence-Control of Admixtures-Modified 3D Printed White Portland-Cement-Based Materials Based on the Response-Surface-Methodology - Yin Yunchao, Huang Jian, Wang Tiezhu, Yang Rong et al. (2023-09)
Effect of Hydroxypropyl-Methylcellulose on Rheology and Printability of the First Printed Layer of Cement Activated Slag-Based 3D Printing Concrete - Zhang Nan, Sanjayan Jay (2023-01)
Extrusion Nozzle Design and Print Parameter Selections for 3D Concrete Printing - Zhang Yi, Zhu Yanmei, Ren Qiang, He Bei et al. (2023-08)
Comparison of Printability and Mechanical Properties of Rigid and Flexible Fiber-Reinforced 3D Printed Cement-Based Materials - Zhao Zhihui, Chen Mingxu, Xu Jiabin, Li Laibo et al. (2021-03)
Mix-Design and Rheological Properties of Magnesium-Potassium-Phosphate Cement Composites Based on the 3D Printing-Extrusion-System
0 Citations
BibTeX
@article{liu_shen_feng_zhao.2024.EoPaSBEWotRPaSBUo3PCC,
author = "Xuelin Liu and Haitao Sheng and Binqing Feng and Piqi Zhao and Yongbo Huang and Shoude Wang and Keke Sun and Mingxu Chen and Lingchao Lu",
title = "Effect of Potassium and Sodium-Based Electrolyzed Water on the Rheological Properties and Structural Build-Up of 3D Printed Cement Composites",
doi = "10.1016/j.jobe.2024.110741",
year = "2024",
journal = "Journal of Building Engineering",
volume = "97",
pages = "110741",
}
Formatted Citation
X. Liu, “Effect of Potassium and Sodium-Based Electrolyzed Water on the Rheological Properties and Structural Build-Up of 3D Printed Cement Composites”, Journal of Building Engineering, vol. 97, p. 110741, 2024, doi: 10.1016/j.jobe.2024.110741.
Liu, Xuelin, Haitao Sheng, Binqing Feng, Piqi Zhao, Yongbo Huang, Shoude Wang, Keke Sun, Mingxu Chen, and Lingchao Lu. “Effect of Potassium and Sodium-Based Electrolyzed Water on the Rheological Properties and Structural Build-Up of 3D Printed Cement Composites”. Journal of Building Engineering 97 (2024): 110741. https://doi.org/10.1016/j.jobe.2024.110741.