Skip to content

Rheological and Mechanical Properties of 3D-Printable Magnesium-Oxysulfate-Cements (2025-02)

10.1016/j.conbuildmat.2025.140618

 Li Qiyan,  Wen Xiaodong,  Gao Xiaojian
Journal Article - Construction and Building Materials, Vol. 470, No. 140618

Abstract

Magnesium oxysulfate cement (MOS) offers a promising alternative to 3D-printed Portland cement due to its rapid hardening and high strength. The layer-to-layer interfacial bonding of the 3D printed specimen is closely related to the rheological performance of fresh mixtures. This paper investigates the influence of rheological properties on the printability and mechanical performance of 3D printable magnesium oxysulfate cement (3DP-MOS) paste. The results show that an increase in the magnesium-to-sulfur ratio reduces fluidity and lowers the minimum water content of MOS mortar, enhancing packing density, accelerating early hydration, and improving printability, extrusion stability and structural integrity. MOS mortar with a molar ratio (MgO: MgSO4·7H2O: H2O) of 15:1:12 or 21:1:15 demonstrates optimal flow performance and setting time. Dynamic yield stress values ranging from 587.9 to 888.7 Pa and a consistency factor of 2.0–36.8 in 3DP-MOS mortar ensure stable extrusion width and stacking height, closely aligning with the intended design and ensuring both precision and structural integrity in 3D-printed structures. Additionally, higher dynamic yield stress and a lower consistency factor promote uniform deposition and a denser microstructure in 3D-printed MOS materials, enhancing mechanical properties.

32 References

  1. Arunothayan Arun, Nematollahi Behzad, Khayat Kamal, Ramesh Akilesh et al. (2022-11)
    Rheological Characterization of Ultra-High-Performance Concrete for 3D Printing
  2. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  3. Colyn Markus, Zijl Gideon, Babafemi Adewumi (2024-02)
    Fresh and Strength Properties of 3D Printable Concrete Mixtures Utilising a High Volume of Sustainable Alternative Binders
  4. Comminal Raphaël, Silva Wilson, Andersen Thomas, Stang Henrik et al. (2020-10)
    Modelling of 3D Concrete Printing Based on Computational Fluid Dynamics
  5. Cui Peng, Wu Chun-ran, Chen Jie, Luo Fuming et al. (2021-02)
    Preparation of Magnesium-Oxysulfate Cement as a 3D Printing Material
  6. Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2023-05)
    Microstructure and Mechanical Properties of Inter-Layer Regions in Extrusion-Based 3D Printed Concrete:
    A Critical Review
  7. Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
    Layer-Interface Properties in 3D Printed Concrete:
    Dual Hierarchical Structure and Micromechanical Characterization
  8. He Lewei, Chow Wai, Li Hua (2020-06)
    Effects of Inter-Layer Notch and Shear Stress on Inter-Layer Strength of 3D Printed Cement-Paste
  9. Hosseini Ehsan, Zakertabrizi Mohammad, Korayem Asghar, Xu Guanzhong (2019-03)
    A Novel Method to Enhance the Inter-Layer Bonding of 3D Printing Concrete:
    An Experimental and Computational Investigation
  10. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  11. Huang Xin, Yang Weihao, Song Fangnian, Zou Jiuqun (2022-04)
    Study on the Mechanical Properties of 3D Printing Concrete Layers and the Mechanism of Influence of Printing Parameters
  12. İlcan Hüseyin, Şahin Oğuzhan, Kul Anil, Ozcelikci Emircan et al. (2022-12)
    Rheological Property and Extrudability Performance-Assessment of Construction and Demolition Waste-Based Geopolymer Mortars with Varied Testing Protocols
  13. Li Haodao, Addai-NImoh Alfred, Kreiger Eric, Khayat Kamal (2023-12)
    Methodology to Design Eco-Friendly Fiber-Reinforced Concrete for 3D Printing
  14. Li Long, Hao Lucen, Li Xiao-Sheng, Xiao Jianzhuang et al. (2023-11)
    Development of CO2-Integrated 3D Printing Concrete
  15. Li Zihan, Liu Huanbao, Nie Ping, Cheng Xiang et al. (2023-12)
    Mechanical Properties of Concrete Reinforced with High-Performance Micro-Particles for 3D Concrete Printing
  16. Luo Fuming, Cui Peng, Tang Wei, Wu Chun-ran et al. (2023-09)
    Influences of Engineering Spoil on the Properties and Microstructure of 3D Printable Magnesium-Cement
  17. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  18. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2021-09)
    Modelling the Inter-Layer Bond Strength of 3D Printed Concrete with Surface Moisture
  19. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
    Extrusion-Based Concrete 3D Printing from a Material Perspective:
    A State of the Art Review
  20. Pan Tinghong, Jiang Yaqing, Ji Xuping (2022-03)
    Inter-Layer Bonding Investigation of 3D Printing Cementitious Materials with Fluidity-Retaining Polycarboxylate-Superplasticizer and High-Dispersion Polycarboxylate Superplasticizer
  21. Roussel Nicolas, Bessaies-Bey Hela, Kawashima Shiho, Marchon Delphine et al. (2019-08)
    Recent Advances on Yield-Stress and Elasticity of Fresh Cement-Based Materials
  22. Sanjayan Jay, Jayathilakage Roshan, Rajeev Pathmanathan (2020-11)
    Vibration-Induced Active Rheology-Control for 3D Concrete Printing
  23. Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2021-11)
    Role of Chemical Admixtures on 3D Printed Portland Cement:
    Assessing Rheology and Buildability
  24. Tao Yaxin, Rahul Attupurathu, Lesage Karel, Yuan Yong et al. (2021-02)
    Stiffening Control of Cement-Based Materials Using Accelerators in In-Line Mixing Processes:
    Possibilities and Challenges
  25. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  26. Wang Li, Tian Zehao, Ma Guowei, Zhang Mo (2020-02)
    Inter-Layer Bonding Improvement of 3D Printed Concrete with Polymer-Modified Mortar:
    Experiments and Molecular Dynamics Studies
  27. Weng Yiwei, Li Mingyang, Zhang Dong, Tan Ming et al. (2021-02)
    Investigation of Inter-Layer Adhesion of 3D Printable Cementitious Material from the Aspect of Printing-Process
  28. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  29. Yin Yunchao, Huang Jian, Wang Tiezhu, Yang Rong et al. (2023-09)
    Effect of Hydroxypropyl-Methylcellulose on Rheology and Printability of the First Printed Layer of Cement Activated Slag-Based 3D Printing Concrete
  30. Yue Hongfei, Hua Sudong, Qian Hao, Yao Xiao et al. (2021-12)
    Investigation on Applicability of Spherical Electric Arc-Furnace-Slag as Fine Aggregate in Superplasticizer-Free 3D Printed Concrete
  31. Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
    A Review of the Current Progress and Application of 3D Printed Concrete
  32. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink

2 Citations

  1. Li Qiyan, Su Anshuang, Gao Xiaojian (2025-06)
    Improvement of Interlayer Performance of 3D Printable Magnesium Oxysulfate Cement-Based Materials by Carbonation Curing
  2. Wang Chaofan, Li Bin, Chen Bing (2025-04)
    Enhancing Printability and Mechanical Performance of 3D Printed Magnesium Phosphate Cement Through Silica Fume Modification:
    Rheological, Microstructural, and Numerical Insights

BibTeX
@article{li_wen_gao.2025.RaMPo3PMOC,
  author            = "Qiyan Li and Xiaodong Wen and Xiaojian Gao",
  title             = "Rheological and Mechanical Properties of 3D-Printable Magnesium-Oxysulfate-Cements",
  doi               = "10.1016/j.conbuildmat.2025.140618",
  year              = "2025",
  journal           = "Construction and Building Materials",
  volume            = "470",
  pages             = "140618",
}
Formatted Citation

Q. Li, X. Wen and X. Gao, “Rheological and Mechanical Properties of 3D-Printable Magnesium-Oxysulfate-Cements”, Construction and Building Materials, vol. 470, p. 140618, 2025, doi: 10.1016/j.conbuildmat.2025.140618.

Li, Qiyan, Xiaodong Wen, and Xiaojian Gao. “Rheological and Mechanical Properties of 3D-Printable Magnesium-Oxysulfate-Cements”. Construction and Building Materials 470 (2025): 140618. https://doi.org/10.1016/j.conbuildmat.2025.140618.