Skip to content

Effect of Additives on the Performance of 3D-Printing Ultra-High Performance Concrete (2025-03)

10.1016/j.jobe.2025.112451

Li Hualong, Shi Ye, Rong Hui, Dai Kaichao
Journal Article - Journal of Building Engineering, No. 112451

Abstract

Developing 3D-printable (3DP) ultra-high performance concrete (UHPC) represents a significant hotspot in the concrete construction field. However, conventional UHPC cannot meet the requirements of printability, and the incorporation of additives is considered an effective strategy to solve these problems. The research on 3DP-UHPC from the perspective of additives in this field is relatively lacking. This study systematically investigates the printability and mechanical properties of 3D-printed ultra-high performance concrete (3DP-UHPC) by combining the hydrated phase, pore structure and micro-morphology of 3DP-UHPC with two different types of additives: inorganic nanomaterials (bentonite (BT)) and chemical polymers (polyacrylamide (PAM)). The results show that the fluidity and extrudability of 3DP-UHPC gradually decrease with increasing additive content while demonstrating an enhancement in buildability. Moreover, BT and PAM have different effects on the flexural strength, flexural strength and interlayer bonding strength of 3DP-UHPC. Although BT and PAM own different mechanisms of function for promoting the hydration of 3DP-UHPC, they can reduce the porosity of 3DP-UHPC and increase the mechanical properties of the matrix. This study shows that 3DP-UHCP displays better printability and mechanical properties when the BT and PAM doping are 0.5% and 0.06%, respectively.

45 References

  1. Bessaies-Bey Hela, Baumann Robert, Schmitz Marc, Radler Michael et al. (2015-05)
    Effect of Polyacrylamide on Rheology of Fresh Cement-Pastes
  2. Bi Minghao, Tran Jonathan, Xia Lingwei, Ma Guowei et al. (2022-06)
    Topology-Optimization for 3D Concrete Printing with Various Manufacturing-Constraints
  3. Buchli Jonas, Giftthaler Markus, Kumar Nitish, Lussi Manuel et al. (2018-07)
    Digital In-Situ Fabrication:
    Challenges and Opportunities for Robotic In-Situ Fabrication in Architecture, Construction, and Beyond
  4. Craveiro Flávio, Duarte José, Bártolo Helena, Bartolo Paulo (2019-04)
    Additive Manufacturing as an Enabling Technology for Digital Construction:
    A Perspective on Construction 4.0
  5. Ding Tao, Shen Kaige, Cai Chen, Xiao Jianzhuang et al. (2024-02)
    3D Printed Concrete with Sewage Sludge Ash:
    Fresh and Hardened Properties
  6. Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
    Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
  7. Fan Dingqiang, Zhu Jinyun, Fan Mengxin, Lu Jianxian et al. (2023-04)
    Intelligent Design and Manufacturing of Ultra-High-Performance Concrete:
    A Review
  8. Gimenez-Carbo Ester, Torres Raquel, Coll Hugo, Roig-Flores Marta et al. (2022-04)
    Preliminary Study of the Fresh and Hard Properties of UHPC That Is Used to Produce 3D Printed Mortar
  9. Giwa Ilerioluwa, Game Daniel, Ahmed Hassan, Noorvand Hassan et al. (2023-02)
    Performance and Macrostructural Characterization of 3D Printed Steel-Fiber-Reinforced Cementitious Materials
  10. Gu Yucun, Zheng Shuyi, Ma Hongyan, Long Wujian et al. (2024-05)
    Effect of Absorption Kinetics of Superabsorbent Polymers on Printability and Inter-Layer Bond of 3D Printing Concrete
  11. Heras Murica Daniel, Genedy Moneeb, Taha Mahmoud (2020-09)
    Examining the Significance of Infill-Printing-Pattern on the Anisotropy of 3D Printed Concrete
  12. Javed Ali, Mantawy Islam, Azizinamini Atorod (2021-05)
    3D Printing of Ultra-High-Performance Concrete for Robotic Bridge Construction
  13. Jia Zijian, Kong Lingyu, Jia Lutao, Ma Lei et al. (2024-04)
    Printability and Mechanical Properties of 3D Printing Ultra-High-Performance Concrete Incorporating Limestone-Powder
  14. Jiang Quan, Liu Qiang, Wu Si, Zheng Hong et al. (2022-06)
    Modification Effect of Nano-Silica and Polypropylene-Fiber for Extrusion-Based 3D Printing Concrete:
    Printability and Mechanical Anisotropy
  15. Kaushik Sandipan, Sonebi Mohammed, Amato Giuseppina, Das Utpal et al. (2023-02)
    Optimization of Mix Proportion of 3D Printable Mortar Based on Rheological Properties and Material-Strength Using Factorial Design of Experiment
  16. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  17. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  18. Lafhaj Zoubeir, Rabenantoandro Andry, Moussaoui Soufiane, Dakhli Zakaria et al. (2019-12)
    Experimental Approach for Printability-Assessment:
    Toward a Practical Decision-Making Framework of Printability for Cementitious Materials
  19. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  20. Li Zhijian, Wang Li, Ma Guowei (2018-05)
    Method for the Enhancement of Buildability and Bending-Resistance of 3D Printable Tailing Mortar
  21. Liu Qiang, Jiang Quan, Huang Mojia, Xin Jie et al. (2022-03)
    Modifying Effect of Anionic Polyacrylamide Dose for Cement-Based 3DP Materials:
    Printability and Mechanical Performance Tests
  22. Liu Zhixin, Li Mingyang, Weng Yiwei, Wong Teck et al. (2018-12)
    Mixture-Design-Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material-Printing
  23. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  24. Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
    Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification
  25. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  26. Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
    Large-Scale Digital Concrete Construction:
    CONPrint3D Concept for On-Site, Monolithic 3D Printing
  27. Medicis Carolina, Gonzalez Sergio, Alvarado Yezid, Vacca Hermes et al. (2022-09)
    Mechanical Performance of Commercially Available Premix UHPC-Based 3D Printable Concrete
  28. Panda Biranchi, Mohamed Nisar, Paul Suvash, Bhagath Singh Gangapatnam et al. (2019-07)
    The Effect of Material Fresh Properties and Process Parameters on Buildability and Inter-Layer Adhesion of 3D Printed Concrete
  29. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  30. Qiu Minghong, Sun Yan, Qian Ye (2023-12)
    Interfacial Bonding Performance of 3D Printed Ultra-High-Performance Strain-Hardening Cementitious Composites and Cast Normal Concrete
  31. Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
    Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
    A Detailed Review
  32. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  33. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  34. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  35. Wang Bolin, Yao Xiaofei, Yang Min, Zhang Runhong et al. (2022-04)
    Mechanical Performance of 3D Printed Concrete in Steam-Curing Conditions
  36. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  37. Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
    A Critical Review of the Use of 3D Printing in the Construction Industry
  38. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  39. Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
    Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure
  40. Yang Yekai, Wu Chengqing, Liu Zhongxian (2023-01)
    Rate-Dependent Behavior of 3D Printed Ultra-High-Performance Fiber-Reinforced Concrete Under Dynamic Splitting Tensile
  41. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  42. Yuan Qiang, Xie Zonglin, Yao Hao, Huang Tingjie et al. (2022-06)
    Effect of Polyacrylamide on the Workability and Inter-Layer Interface Properties of 3D Printed Cementitious Materials
  43. Zhang Chao, Hou Zeyu, Chen Chun, Zhang Yamei et al. (2019-09)
    Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement-Paste and Optimum Aggregate-Content
  44. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  45. Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
    A Review of the Current Progress and Application of 3D Printed Concrete

3 Citations

  1. Zhang Hui, Wu Jie, Huang Bo-Tao, Yu Rena et al. (2025-11)
    Cross-Scale Mechanisms of Anisotropy in 3D-Printed Ultra-High-Performance Concrete
  2. Chen Wenguang, Yu Jie, Ye Junhong, Yu Jiangtao et al. (2025-11)
    3D Printed High-Performance Fiber-Reinforced Cementitious Composites:
    Fresh, Mechanical, and Microstructural Properties
  3. Chan Li-Jing, Padil Khairul, Chin Chee-Long, Ibrahim Izni et al. (2025-09)
    Strategies to Enhance Interlayer Bonding in 3D Printed Concrete:
    A Review

BibTeX
@article{li_shi_rong_dai.2025.EoAotPo3PUHPC,
  author            = "Hualong Li and Ye Shi and Hui Rong and Kaichao Dai",
  title             = "Effect of Additives on the Performance of 3D-Printing Ultra-High Performance Concrete",
  doi               = "10.1016/j.jobe.2025.112451",
  year              = "2025",
  journal           = "Journal of Building Engineering",
  pages             = "112451",
}
Formatted Citation

H. Li, Y. Shi, H. Rong and K. Dai, “Effect of Additives on the Performance of 3D-Printing Ultra-High Performance Concrete”, Journal of Building Engineering, p. 112451, 2025, doi: 10.1016/j.jobe.2025.112451.

Li, Hualong, Ye Shi, Hui Rong, and Kaichao Dai. “Effect of Additives on the Performance of 3D-Printing Ultra-High Performance Concrete”. Journal of Building Engineering, 2025, 112451. https://doi.org/10.1016/j.jobe.2025.112451.