Static and Dynamic Mechanical Characteristics of 3D Printed Anisotropic Basalt Fiber-Reinforced Cement Mortar (2024-12)¶
, Liang Yu-Fang, , Huang Chi-Hong, Tsai Ying-Kuan, Lok Man-Hoi
Journal Article - Journal of Building Engineering, No. 111692
Abstract
Three-dimensional (3D) printed mortar, represents an innovative approach to construction, utilizing additive manufacturing techniques, distinct from traditional reinforced concrete (RC) formwork methods. In this study, chopped basalt fibers, each 6 mm in length, were added to the mortar at different volume ratios (2.5‰, 5‰, 7.5‰, and 10‰). The printable properties of basalt fiber-reinforced cement mortar (BFRCM), such as the extrudability, fluidity, setting time, and buildability, were evaluated to determine the optimal mix for 3D printing applications. The compressive and flexural strengths of 3D-printed anisotropic specimens with those of mold-cast specimens after 28 days of wet curing were compared. Additionally, the dynamic mechanical properties under various impact conditions were assessed using both the drop-weight impact test and the stress reversal split Hopkinson pressure bar (SRSHPB) test. The findings revealed that a fiber ratio of 7.5 vol.‰ resulted in the highest compressive and flexural strengths. It is noteworthy that the anisotropic mechanical properties of the 3D-printed specimens exhibited a considerable enhancement in strength in the load direction perpendicular to the printing side. However, the results of the dynamic strength tests revealed that the interlayer adhesion at the printing interfaces of the 3D-printed specimens was weaker than that of the mold-cast specimens in both the drop-weight impact test and the SRSHPB test.
¶
44 References
- Albar Abdulrahman, Chougan Mehdi, Kheetan Mazen, Swash Mohammad et al. (2020-04)
Effective Extrusion-Based 3D Printing System Design for Cementitious-Based Materials - Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing - Baktheer Abedulgader, Claßen Martin (2024-07)
A Review of Recent Trends and Challenges in Numerical Modeling of the Anisotropic Behavior of Hardened 3D Printed Concrete - Bester Frederick, Heever Marchant, Kruger Jacques, Zijl Gideon (2020-11)
Reinforcing Digitally Fabricated Concrete:
A Systems Approach Review - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Chen Mingxu, Li Laibo, Zheng Yan, Zhao Piqi et al. (2018-09)
Rheological and Mechanical Properties of Admixtures-Modified 3D Printing Sulphoaluminate Cementitious Materials - Delgado Camacho Daniel, Clayton Patricia, Brien William, Seepersad Carolyn et al. (2018-02)
Applications of Additive Manufacturing in the Construction Industry:
A Forward-Looking Review - Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
Hardened Properties of Layered 3D Printed Concrete with Recycled Sand - Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers - Hossain Md., Zhumabekova Altynay, Paul Suvash, Kim Jong (2020-10)
A Review of 3D Printing in Construction and Its Impact on the Labor Market - Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Li Yeou-Fong, Tsai Pei-Jen, Syu Jin-Yuan, Lok Man-Hoi et al. (2023-12)
Mechanical Properties of 3D Printed Carbon Fiber-Reinforced Cement Mortar - Li Zhijian, Wang Li, Ma Guowei, Sanjayan Jay et al. (2020-07)
Strength and Ductility Enhancement of 3D Printing Structure Reinforced by Embedding Continuous Micro-Cables - Li Yu, Wu Hao, Xie Xinjie, Zhang Liming et al. (2024-02)
FloatArch:
A Cable-Supported, Unreinforced, and Re-Assemblable 3D Printed Concrete Structure Designed Using Multi-Material Topology-Optimization - Liu Jie, Lv Chun (2022-03)
Properties of 3D Printed Polymer Fiber-Reinforced Mortars:
A Review - Lv Chun, Shen Hongtao, Liu Jie, Wu Dan et al. (2022-11)
Properties of 3D Printing Fiber-Reinforced Geopolymers Based on Inter-Layer Bonding and Anisotropy - Ma Guowei, Li Zhijian, Wang Li, Bai Gang (2018-10)
Micro-Cable-Reinforced Geopolymer Composite for Extrusion-Based 3D Printing - Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing - Mo Yixin, Xing Jianchun, Yue Songlin, Zhang Yamei et al. (2022-04)
Dynamic Properties of 3D Printed Cement Mortar Based on Split Hopkinson Pressure Bar Testing - Mo Yixin, Yue Songlin, Zhou Qizhen, Feng Bowei et al. (2021-09)
Dynamic Properties and Fractal Characteristics of 3D Printed Cement Mortar in SHPB-Test - Nguyen Vuong, Li Shuai, Liu Junli, Nguyen Kien et al. (2022-11)
Modelling of 3D Concrete Printing Process:
A Perspective on Material and Structural Simulations - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Paolini Alexander, Kollmannsberger Stefan, Rank Ernst (2019-10)
Additive Manufacturing in Construction:
A Review on Processes, Applications, and Digital Planning Methods - Puzatova (nee Sharanova) Anastasiia, Shakor Pshtiwan, Laghi Vittoria, Dmitrieva Maria (2022-11)
Large-Scale 3D Printing for Construction Application by Means of Robotic Arm and Gantry 3D Printer:
A Review - Ramezani Amir, Modaresi Shahriar, Dashti Pooria, Givkashi Mohammad et al. (2023-04)
Effects of Different Types of Fibers on Fresh and Hardened Properties of Cement and Geopolymer-Based 3D Printed Mixtures:
A Review - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Shahzad Qamar, Shen Junyi, Naseem Rabia, Yao Yonggang et al. (2021-10)
Influence of Phase-Change-Material on Concrete Behavior for Construction 3D Printing - Shakor Pshtiwan, Nejadi Shami, Sutjipto Sheila, Paul Gavin et al. (2020-01)
Effects of Deposition-Velocity in the Presence-Absence of E6-Glass-Fiber on Extrusion-Based 3D Printed Mortar - Soto Borja, Agustí-Juan Isolda, Hunhevicz Jens, Joss Samuel et al. (2018-05)
Productivity of Digital Fabrication in Construction:
Cost and Time-Analysis of a Robotically Built Wall - Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2020-09)
3D Printed Concrete for Large-Scale Buildings:
An Overview of Rheology, Printing Parameters, Chemical Admixtures, Reinforcements, and Economic and Environmental Prospects - Tay Yi, Li Mingyang, Tan Ming (2019-04)
Effect of Printing Parameters in 3D Concrete Printing:
Printing Region and Support Structures - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Ungureanu Dragoș, Onuțu Cătălin, Isopescu Dorina, Țăranu Nicolae et al. (2023-06)
A Novel Approach for 3D Printing Fiber-Reinforced Mortars - Valente Marco, Sibai Abbas, Sambucci Matteo (2019-09)
Extrusion-Based Additive Manufacturing of Concrete Products:
Revolutionizing and Remodeling the Construction Industry - Wang Li, Ye Kehan, Wan Qian, Li Zhijian et al. (2023-05)
Inclined 3D Concrete Printing:
Build-Up Prediction and Early-Age Performance-Optimization - Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
Large-Scale 3D Printing Concrete Technology:
Current Status and Future Opportunities - Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure - Yang Liming, Sepasgozar Samad, Shirowzhan Sara, Kashani Alireza et al. (2022-12)
Nozzle Criteria for Enhancing Extrudability, Buildability and Inter-Layer Bonding in 3D Printing Concrete - Yang Yekai, Wu Chengqing, Liu Zhongxian (2023-01)
Rate-Dependent Behavior of 3D Printed Ultra-High-Performance Fiber-Reinforced Concrete Under Dynamic Splitting Tensile - Yang Yekai, Wu Chengqing, Liu Zhongxian, Li Jun et al. (2022-02)
Characteristics of 3D Printing Ultra-High-Performance Fiber-Reinforced Concrete Under Impact Loading - Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing - Zhang Xu, Li Mingyang, Lim Jian, Weng Yiwei et al. (2018-08)
Large-Scale 3D Printing by a Team of Mobile Robots - Zhang Nan, Sanjayan Jay (2023-01)
Extrusion Nozzle Design and Print Parameter Selections for 3D Concrete Printing
4 Citations
- Zhu Xiaowei, Zhang Xudong, Zhang Jicheng, Chen Miao et al. (2025-11)
Study on Anisotropic Thermal and Mechanical Properties of 3D-Printed Scrap-Aerogel-Incorporated Concrete - Wang Huai, Li Xiulin, Gong Hao, Xu Jingjie et al. (2025-10)
Thermal and Mechanical Properties of 3D-Printed Fiber-Reinforced Lightweight Concrete Based on Air Entrainment and Hollow Glass Microspheres - Luo Surong, Jin Wenhao, Zhang Zhaorui, Zhang Kaijian (2025-09)
Constitutive Relationship of 3D Printed Fiber Reinforced Recycled Sand Concrete Under Uniaxial Compression - Xia Zhenjiang, Geng Jian, Zhou Zhijie, Liu Genjin (2025-01)
Comparative Analysis of Polypropylene, Basalt, and Steel Fibers in 3D Printed Concrete:
Effects on Flowability, Printabiliy, Rheology, and Mechanical Performance
BibTeX
@article{li_lian_syu_huan.2024.SaDMCo3PABFRCM,
author = "Yeou-Fong Li and Yu-Fang Liang and Jin-Yuan Syu and Chi-Hong Huang and Ying-Kuan Tsai and Man-Hoi Lok",
title = "Static and Dynamic Mechanical Characteristics of 3D Printed Anisotropic Basalt Fiber-Reinforced Cement Mortar",
doi = "10.1016/j.jobe.2024.111692",
year = "2024",
journal = "Journal of Building Engineering",
pages = "111692",
}
Formatted Citation
Y.-F. Li, Y.-F. Liang, J.-Y. Syu, C.-H. Huang, Y.-K. Tsai and M.-H. Lok, “Static and Dynamic Mechanical Characteristics of 3D Printed Anisotropic Basalt Fiber-Reinforced Cement Mortar”, Journal of Building Engineering, p. 111692, 2024, doi: 10.1016/j.jobe.2024.111692.
Li, Yeou-Fong, Yu-Fang Liang, Jin-Yuan Syu, Chi-Hong Huang, Ying-Kuan Tsai, and Man-Hoi Lok. “Static and Dynamic Mechanical Characteristics of 3D Printed Anisotropic Basalt Fiber-Reinforced Cement Mortar”. Journal of Building Engineering, 2024, 111692. https://doi.org/10.1016/j.jobe.2024.111692.