3D Printing of Concrete-Geopolymer Hybrids (2022-04)¶
, , , Bednarz Sebastian, Sroczyk Piotr, , , , ,
Journal Article - Materials, Vol. 15, Iss. 8
Abstract
In recent years, 3D concrete printing technology has been developing dynamically. Intensive research is still being carried out on the composition of the materials dedicated to innovative 3D printing solutions. Here, for the first time, concrete-geopolymer hybrids produced with 3D printing technology and dedicated environmentally friendly building construction are presented. The concrete-geopolymer hybrids consisting of 95% concrete and 5% geopolymer based on fly ash or metakaolin were compared to standard concrete. Moreover, 3D printed samples were compared with the samples of the same composition but prepared by the conventional method of casting into molds. The phase composition, water leachability, compressive, and flexural strength in the parallel and perpendicular directions to the printing direction, and fire resistance followed by compressive strength were evaluated. Concrete-geopolymer hybrids were shown to contain a lower content of hazardous compounds in leaches than concrete samples. The concentration of toxic metals did not exceed the limit values indicated in the Council Decision 2003/33/EC; therefore, the materials were classified as environmentally neutral. The different forms of Si/Al in fly ash and metakaolin resulted in the various potentials for geopolymerization processes, and finally influenced the densification of the hybrids and the potential for immobilization of toxic elements. Although the compressive strength of concrete was approximately 40% higher for cast samples than for 3D printed ones, for the hybrids, the trend was the opposite. The addition of fly ash to concrete resulted in a 20% higher compressive strength compared to an analogous hybrid containing the addition of metakaolin. The compressive strength was 7-10% higher provided the samples were tested in the parallel direction to the Z-axis of the printout. The sample compressive strength of 24-43 MPa decreased to 8-19 MPa after the fire resistance tests as a result of moisture evaporation, weight loss, thermal deformation, and crack development. Importantly, the residual compressive strength of the hybrid samples was 1.5- to 2- fold higher than the concrete samples. Therefore, it can be concluded that the addition of geopolymer to the concrete improved the fire resistance of the samples.
¶
18 References
- Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing - Chen Yidong, Zhang Yunsheng, Pang Bo, Liu Zhiyong et al. (2021-05)
Extrusion-Based 3D Printing Concrete with Coarse Aggregate:
Printability and Direction-Dependent Mechanical Performance - Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
Hardened Properties of Layered 3D Printed Concrete with Recycled Sand - Hojati Maryam, Li Zhanzhao, Memari Ali, Park Keunhyoung et al. (2022-01)
3D Printable Quaternary-Cementitious-Materials Towards Sustainable Development:
Mixture Design and Mechanical Properties - Li Zhijian, Ma Guowei, Wang Fang, Wang Li et al. (2021-10)
Expansive Cementitious Materials to Improve Micro-Cable-Reinforcement Bond in 3D Concrete Printing - Liu Xuanting, Sun Bohua (2021-11)
The Influence of Interface on the Structural Stability in 3D Concrete Printing Processes - Manikandan Karthick, Jiang Xuepeng, Singh Amit, Li Beiwen et al. (2020-06)
Effects of Nozzle Geometries on 3D Printing of Clay Constructs:
Quantifying Contour-Deviation and Mechanical Properties - Marchment Taylor, Sanjayan Jay, Nematollahi Behzad, Xia Ming (2019-02)
Inter-Layer Strength of 3D Printed Concrete - Marczyk Joanna, Ziejewska Celina, Gądek Szymon, Korniejenko Kinga et al. (2021-11)
Hybrid Materials Based on Fly-Ash, Metakaolin, and Cement for 3D Printing - Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
Large-Scale Digital Concrete Construction:
CONPrint3D Concept for On-Site, Monolithic 3D Printing - Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2022-02)
Set-on-Demand Geopolymer Using Print-Head Mixing for 3D Concrete Printing - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
Mechanical Characterization of 3D Printable Concrete - Rehman Atta, Kim Jung-Hoon (2021-07)
3D Concrete Printing:
A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics - Reinold Janis, Nerella Venkatesh, Mechtcherine Viktor, Meschke Günther (2022-02)
Extrusion-Process-Simulation and Layer-Shape-Prediction During 3D Concrete Printing Using the Particle-Finite-Element-Method - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Voney Vera, Odaglia Pietro, Brumaud Coralie, Dillenburger Benjamin et al. (2021-02)
From Casting to 3D Printing Geopolymers:
A Proof of Concept - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Yu Shiwei, Xia Ming, Sanjayan Jay, Yang Lin et al. (2021-07)
Microstructural Characterization of 3D Printed Concrete
21 Citations
- Murali Gunasekaran, Kravchenko Ekaterina, Yuvaraj Divya, Avudaiappan Siva (2025-12)
Next-Generation Green Construction:
3D-Printed Geopolymer Concrete with Optimized Rheology, Mechanical Performance, and Environmental Efficiency - Athira R., Sathyan Dhanya (2025-11)
Review of 3D Printing Advancements in Geopolymer Concrete:
Current Challenges and Future Directions - Rudziewicz Magdalena, Maroszek Marcin, Hebda Marek (2025-09)
Comparison of Porosity and Thermal Conductivity of Concrete and Alkali-Activated Hybrid Binders in 3D-Printed Fiber-Reinforced Foamed Composites - Kiyani Muhammad, Hussain Syed, Emaan Rajja, Kamal Muhammad et al. (2025-08)
Influence of Process Parameters on 3D Concrete Printing:
A Step Towards Standardized Approaches - Jaji Mustapha, Babafemi Adewumi, Zijl Gideon (2025-05)
Mechanical Performance of Extrusion-Based Two-Part 3D-Printed Geopolymer Concrete:
A Review of Advances in Laboratory and Real-Scale Construction Projects - Becher Anton, Gądek Szymon, Korniejenko Kinga (2025-05)
3D Printing with Geopolymers and Its Applications - Raqeb Hanan, Ghaffar Seyed (2024-12)
3D Concrete Printing in Kuwait:
Stakeholder Insights for Sustainable Waste Management Solutions - Ali Md., Abilgaziyev Anuar, Temirzakuly Bakbergen, Kurokawa Syuhei (2024-12)
Development of a Novel 3D Construction Printer for Consistent Buildability of Novel Geopolymer Mortar and Its Challenges - Murali Gunasekaran, Leong Sing (2024-11)
Waste-Driven Construction:
A State of the Art Review on the Integration of Waste in 3D Printed Concrete in Recent Researches for Sustainable Development - Rudziewicz Magdalena, Maroszek Marcin, Setlak (nee Pławecka) Kinga, Góra Mateusz et al. (2024-08)
Optimization of Foams-Polypropylene Fiber-Reinforced Concrete Mixtures Dedicated for 3D Printing - Barve Prasad, Bahrami Alireza, Shah Santosh (2024-07)
A Comprehensive Review on Effects of Material-Composition, Mix-Design, and Mixing-Regimes on Rheology of 3D Printed Geopolymer Concrete - Krishna R., Rehman Asif, Mishra Jyotirmoy, Saha Suman et al. (2024-06)
Additive Manufacturing of Geopolymer Composites for Sustainable Construction:
Critical Factors, Advancements, Challenges, and Future Directions - Oulkhir Fatima, Akhrif Iatimad, Jai Mostapha (2024-05)
3D Concrete Printing Success:
An Exhaustive Diagnosis and Failure-Modes-Analysis - Hassan Habibelrahman, Rodriguez-Ubinas Edwin, Tamimi Adil, Trepci Esra et al. (2024-04)
Towards Innovative and Sustainable Buildings:
A Comprehensive Review of 3D Printing in Construction - Korniejenko Kinga, Gądek Szymon, Dynowski Piotr, Tran Doan et al. (2024-02)
Additive Manufacturing in Underwater Applications - Rudziewicz Magdalena, Maroszek Marcin, Góra Mateusz, Dziura Paweł et al. (2023-09)
Feasibility Review of Aerated Materials Application in 3D Concrete Printing - Samudrala Manideep, Mujeeb Syed, Lanjewar Bhagyashri, Chippagiri Ravijanya et al. (2023-05)
3D Printable Concrete for Energy-Efficient Buildings - Baigarina Akerke, Shehab Essam, Ali Md. (2023-02)
Construction 3D Printing:
A Critical Review and Future Research-Directions - Raphael Benny, Senthilnathan Shanmugaraj, Patel Abhishek, Bhat Saqib (2023-01)
A Review of Concrete 3D Printed Structural Members - Marczyk Joanna, Ziejewska Celina, Korniejenko Kinga, Łach Michał et al. (2022-09)
Properties of 3D Printed Concrete-Geopolymer Hybrids Reinforced with Aramid Roving - He Chuan, Zhang Shiyu, Liang Youwang, Ahmad Waqas et al. (2022-07)
A Scientometric Review on Mapping Research Knowledge for 3D Printing Concrete
BibTeX
@article{ziej_marc_korn_bedn.2022.3PoCGH,
author = "Celina Ziejewska and Joanna Marczyk and Kinga Korniejenko and Sebastian Bednarz and Piotr Sroczyk and Michał Łach and Janusz Mikuła and Beata Figiela and Magdalena Szechyńska-Hebda and Marek Hebda",
title = "3D Printing of Concrete-Geopolymer Hybrids",
doi = "10.3390/ma15082819",
year = "2022",
journal = "Materials",
volume = "15",
number = "8",
}
Formatted Citation
C. Ziejewska, “3D Printing of Concrete-Geopolymer Hybrids”, Materials, vol. 15, no. 8, 2022, doi: 10.3390/ma15082819.
Ziejewska, Celina, Joanna Marczyk, Kinga Korniejenko, Sebastian Bednarz, Piotr Sroczyk, Michał Łach, Janusz Mikuła, Beata Figiela, Magdalena Szechyńska-Hebda, and Marek Hebda. “3D Printing of Concrete-Geopolymer Hybrids”. Materials 15, no. 8 (2022). https://doi.org/10.3390/ma15082819.