Skip to content

Fire Performance of Innovative 3D Printed Concrete Composite Wall Panels (2021-06)

A Numerical Study

10.1016/j.cscm.2021.e00586

Suntharalingam Thadshajini,  Gatheeshgar Perampalam, Upasiri Irindu,  Poologanathan Keerthan,  Nagaratnam Brabha,  Corradi Marco, Nuwanthika Dilini
Journal Article - Case Studies in Construction Materials, Vol. 15

Abstract

The 3-Dimensional (3D) printing technology in the construction sector has seen an accelerating growth owing to its potential advantages. For this layer-based construction, a detailed investigation on fire performance is necessary. However, there are limited research studies for 3D Printed Concrete (3DPC) walls exposed to fire. Therefore, this paper investigates the fire performance of different types of 3D printed concrete walls using validated Finite Element Models (FEMs). Validated heat transfer FEMs were extended to investigate the fire performance of a range of 3DPC wall configurations (solid, cavity, and composite) under standard fire conditions. The results show that 3DPC non-load bearing cavity walls underperform when subjected to standard fire compared to solid 3DPC walls. The novel composite 3DPC walls with the use of Rockwool as cavity insulation offers superior fire resistance.

23 References

  1. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  2. Cicione Antonio, Kruger Jacques, Walls Richard, Zijl Gideon (2020-05)
    An Experimental Study of the Behavior of 3D Printed Concrete at Elevated Temperatures
  3. Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
    Mechanical Properties of Structures 3D Printed with Cementitious Powders
  4. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  5. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  6. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  7. Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
    Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction
  8. Nematollahi Behzad, Xia Ming, Sanjayan Jay (2017-07)
    Current Progress of 3D Concrete Printing Technologies
  9. Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
    In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction
  10. Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
    Additive Manufacturing of Geopolymer for Sustainable Built Environment
  11. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  12. Panda Biranchi, Tan Ming (2018-11)
    Rheological Behavior of High-Volume Fly-Ash Mixtures Containing Micro-Silica for Digital Construction Application
  13. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  14. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  15. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2021-06)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete:
    Correction
  16. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  17. Suiker Akke (2018-01)
    Mechanical Performance of Wall Structures in 3D Printing Processes:
    Theory, Design Tools and Experiments
  18. Wang Li, Jiang Hailong, Li Zhijian, Ma Guowei (2020-02)
    Mechanical Behaviors of 3D Printed Lightweight Concrete Structure with Hollow Section
  19. Weng Yiwei, Li Mingyang, Liu Zhixin, Lao Wenxin et al. (2018-12)
    Printability and Fire Performance of a Developed 3D Printable Fiber-Reinforced Cementitious Composites under Elevated Temperatures
  20. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  21. Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
    A Critical Review of the Use of 3D Printing in the Construction Industry
  22. Zareiyan Babak, Khoshnevis Behrokh (2017-08)
    Effects of Interlocking on Inter-Layer Adhesion and Strength of Structures in 3D Printing of Concrete
  23. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink

30 Citations

  1. Sifan Mohamed, Upasiri Irindu, Poologanathan Keerthan, Popo-Ola Sunday et al. (2025-12)
    Fire Performance and Design of LSF Wall Panels with 3D Printed Concrete and Steel Lipped Channel Sections
  2. Geng Renyu, Jiang Jinming, Du Pengcong, Zhang Huiliang et al. (2025-11)
    Multiscale Thermal Optimization of 3D-Printed Walls:
    Integrating Structure, Material, and Process with Fire-Thermal Synergy
  3. Mostert Jean-Pierre, Kruger Jacques (2025-10)
    Numerically Optimised Filament Surface Topology Towards Maximum Bond Strength in 3D Printed Concrete
  4. Sikora Paweł, Skibicki Szymon, Bielawski Jakub, Techman Mateusz et al. (2025-09)
    Elevated Temperature Response and Fire Resistance Considerations of 3D-Printed Concrete:
    Small- to Medium-Scale Wall Experiments
  5. Zhou Biao, Zhou Hongru, Yoshioka Hideki, Noguchi Takafumi et al. (2025-04)
    Mechanical and Microstructure Evolution of 3D Printed Concrete Interlayer at Elevated Temperatures
  6. Suphunsaeng Kantawich, Prasittisopin Lapyote, Pethrung Sirichai, Pansuk Withit (2025-03)
    Fire Performance Evaluation of 3D-Printed Concrete Walls:
    A Combined Full-Scale and Numerical Modeling Approach
  7. Aminpour Nima, Memari Ali (2024-12)
    Analysis of Anisotropic Behavior in 3D Concrete Printing for Mechanical Property Evaluation
  8. Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
    Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
    Materials, Engineered Properties and Techniques for Additive Manufacturing
  9. Barbosa Marcella, Anjos Marcos, Maia José, Camões Aires et al. (2024-09)
    Effect of Expanded Perlite on the Properties of 3DCP Mixtures
  10. Wang Jinjin, Chen Cheng, Chu Tianwei, Jiang Liming et al. (2024-07)
    Experimental Study and OpenSees Modelling for Thermal Response of 3D Printed Concrete Exposed to Fires
  11. Zaid Osama, Ouni Mohamed (2024-04)
    Advancements in 3D Printing of Cementitious Materials:
    A Review of Mineral Additives, Properties, and Systematic Developments
  12. Yu Hao, Zhang Weiwei, Yin Binbin, Sun Weikang et al. (2024-01)
    Modeling Extrusion-Process and Layer-Deformation in 3D Concrete Printing via Smoothed Particle-Hydrodynamics
  13. Neri Manuela, Licciardello Lucia, Reggia Adriano, Pilotelli M. et al. (2024-01)
    Improving the Energy Performance of a 3D Printed Wall Using Recycled Material
  14. Vignesh B., Parthasarathi N. (2023-11)
    Analytical Study on 3D Printed Concrete Wall with Different Wall-Configurations When Exposed to High Temperature
  15. Chernysheva Natalia, Shatalova Svetlana, Lesovik Valeriy, Kozlov Pavel (2023-11)
    Deformation Characteristics of Dense and Foamed Mortars Based on Cement and Gypsum-to-Cement Binders for 3D Printing
  16. Arrêteau Manon, Fabien Aurélie, Haddaji Badreddine, Chateigner Daniel et al. (2023-07)
    Review of Advances in 3D Printing Technology of Cementitious Materials:
    Key Printing Parameters and Properties Characterization
  17. Pillay Selicia, Walls Richard, Merwe Johann (2023-07)
    Conceptualising the Behavior of 3D Printed Concrete Structures in Fire
  18. Shenawa Amaal, Karoti Poonam (2023-06)
    3D Printing in Construction, Mixture Characteristics, Strength, and Thermal Performance-Review
  19. Chun Seung-Yeop, Kim Su-jin, Kim Woon-Gi, Lee Geumyeon et al. (2022-12)
    Powder-Bed-Based 3D Printing with Cement for Sustainable Casting
  20. Zahrani Abdullah, Alghamdi Abdulrahman, Basalah Ahmad (2022-12)
    Computational Optimization of 3D Printed Concrete Walls for Improved Building Thermal Performance
  21. Mansouri Abraham, Binali Alreem, Aljawi Abdulla, Alhammadi Ahmed et al. (2022-10)
    Thermal Modeling of the Convective Heat-Transfer in the Large Air-Cavities of the 3D Concrete Printed Walls
  22. Xu Weiguo, Huang Shuyi, Han Dong, Zhang Zhiling et al. (2022-08)
    Toward Automated Construction:
    The Design-to-Printing Workflow for a Robotic In-Situ 3D Printed House
  23. Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
    Test-Methods for 3D Printable Concrete
  24. Lesovik Valeriy, Tolstoy Aleksandr, Fediuk Roman, Amran Mugahed et al. (2022-08)
    Improving the Performances of a Mortar for 3D Printing by Mineral Modifiers
  25. Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
    Durability Properties of 3D Printed Concrete
  26. Han Nv, Xiao Jianzhuang, Zhang Lihai, Peng Yu (2022-06)
    A Micro-Scale-Based Numerical Model for Investigating Hygro-Thermo-Mechanical Behavior of 3D Printed Concrete at Elevated Temperatures
  27. Klyuev Sergey, Klyuev Alexander, Fediuk Roman, Ageeva Marina et al. (2022-04)
    Fresh and Mechanical Properties of Low-Cement Mortars for 3D Printing
  28. Suntharalingam Thadshajini, Upasiri Irindu, Nagaratnam Brabha, Poologanathan Keerthan et al. (2022-01)
    Finite Element Modelling to Predict the Fire Performance of Bio-Inspired 3D Printed Concrete Wall Panels Exposed to Realistic Fire
  29. Liu Junli, Li Shuai, Gunasekara Chamila, Fox Kate et al. (2021-11)
    3D Printed Concrete with Recycled Glass:
    Effect of Glass Gradation on Flexural Strength and Microstructure
  30. Suntharalingam Thadshajini, Upasiri Irindu, Gatheeshgar Perampalam, Poologanathan Keerthan et al. (2021-07)
    Fire-Resistance of 3D Printed Concrete Composite Wall Panels Exposed to Various Fire Scenarios

BibTeX
@article{sunt_gath_upas_pool.2021.FPoI3PCCWP,
  author            = "Thadshajini Suntharalingam and Perampalam Gatheeshgar and Irindu Upasiri and Keerthan Poologanathan and Brabha Nagaratnam and Marco Corradi and Dilini Nuwanthika",
  title             = "Fire Performance of Innovative 3D Printed Concrete Composite Wall Panels: A Numerical Study",
  doi               = "10.1016/j.cscm.2021.e00586",
  year              = "2021",
  journal           = "Case Studies in Construction Materials",
  volume            = "15",
}
Formatted Citation

T. Suntharalingam, “Fire Performance of Innovative 3D Printed Concrete Composite Wall Panels: A Numerical Study”, Case Studies in Construction Materials, vol. 15, 2021, doi: 10.1016/j.cscm.2021.e00586.

Suntharalingam, Thadshajini, Perampalam Gatheeshgar, Irindu Upasiri, Keerthan Poologanathan, Brabha Nagaratnam, Marco Corradi, and Dilini Nuwanthika. “Fire Performance of Innovative 3D Printed Concrete Composite Wall Panels: A Numerical Study”. Case Studies in Construction Materials 15 (2021). https://doi.org/10.1016/j.cscm.2021.e00586.