Geopolymer Mortars for Use in Construction 3D Printing (2023-10)¶
10.1016/j.conbuildmat.2023.133967
, , ,
Journal Article - Construction and Building Materials, Vol. 409, No. 133967
Abstract
The environmental impact of concrete 3D printing (C3DP) has become a concern due to its large cement consumption and over-exploitation of natural resources. This study investigates the viability of using geopolymer mixtures in C3DP prepared with fly ash (FA)/ground granulated blast furnace slag (GGBS) and underutilised aggregate as substitutes for ordinary Portland cement (OPC) and natural aggregate, respectively. This paper focuses on the rheological, mechanical, and shrinkage properties of FA/GGBS-based geopolymer mortar with lead smelter slag (LSS) as natural sand (NS) substitute and the impact of adding nanoclay (NC) and graphene oxide (GO), as thixotropy agents, on the yield stress development and viscosity recovery properties of the mixtures. The effect of various outdoor environmental conditions of 24 ◦C -50 %RH, 35 ◦C -90 %RH and 35 ◦C -50 %RH on pore water evaporation and 28-day drying shrinkage of 3D printable geopolymer mortar was studied, considering the effect of NS, LSS, NC and GO in free-formed and control conditions. LSS GO-modified mortars exhibited superior viscosity recovery capacity and yield stress evolution compared to their NCmodified counterparts. Moreover, using LSS instead of NS resulted in increased 28-day compressive strength under various environmental conditions, and LSS mortars exhibited lower drying shrinkage in both conventional casting and free-formed conditions. The findings of this paper will serve as a benchmark for further studies on the effect of different curing techniques (internal or external) on the hardened state dimensional stability of 3D printed products using alkali-activated binder systems to improve the structural integrity by controlling the water evaporation and drying shrinkage development.
¶
34 References
- Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders - Alhumayani Hashem, Gomaa Mohamed, Soebarto Veronica, Jabi Wassim (2020-06)
Environmental Assessment of Large-Scale 3D Printing in Construction:
A Comparative Study between Cob and Concrete - Al-Qutaifi Sarah, Nazari Ali, Bagheri Ali (2018-07)
Mechanical Properties of Layered Geopolymer Structures Applicable in Concrete 3D Printing - Álvarez-Fernández Martina, Prendes-Gero María, González-Nicieza Celestino, Guerrero-Miguel Diego-José et al. (2021-02)
Optimum Mix-Design for 3D Concrete Printing Using Mining-Tailings:
A Case Study in Spain - Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates - Chougan Mehdi, Ghaffar Seyed, Sikora Paweł, Chung Sang-Yeop et al. (2021-02)
Investigation of Additive Incorporation on Rheological, Microstructural and Mechanical Properties of 3D Printable Alkali-Activated Materials - Craveiro Flávio, Bártolo Helena, Gale Andrew, Duarte José et al. (2017-07)
A Design Tool for Resource-Efficient Fabrication of 3D Graded Structural Building Components Using Additive Manufacturing - Cuevas Villalobos Karla, Chougan Mehdi, Martin Falk, Ghaffar Seyed et al. (2021-05)
3D Printable Lightweight Cementitious Composites with Incorporated Waste-Glass-Aggregates and Expanded Microspheres:
Rheological, Thermal and Mechanical Properties - Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages - Ding Tao, Xiao Jianzhuang, Zou Shuai, Yu Jiangtao (2021-03)
Flexural Properties of 3D Printed Fiber-Reinforced Concrete with Recycled Sand - Guo Xiaolu, Yang Junyi, Xiong Guiyan (2020-09)
Influence of Supplementary Cementitious Materials on Rheological Properties of 3D Printed Fly-Ash-Based Geopolymer - Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Ma Guowei, Wang Li (2017-08)
A Critical Review of Preparation Design and Workability Measurement of Concrete Material for Large-Scale 3D Printing - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
Extrusion-Based Concrete 3D Printing from a Material Perspective:
A State of the Art Review - Nerella Venkatesh, Krause Martin, Mechtcherine Viktor (2019-11)
Direct Printing-Test for Buildability of 3D Printable Concrete Considering Economic Viability - Nodehi Mehrab, Ozbakkaloglu Togay, Gholampour Aliakbar (2022-04)
Effect of Supplementary Cementitious Materials on Properties of 3D Printed Conventional and Alkali-Activated Concrete:
A Review - Panda Biranchi, Bhagath Singh Gangapatnam, Unluer Cise, Tan Ming (2019-02)
Synthesis and Characterization of One-Part Geopolymers for Extrusion-Based 3D Concrete Printing - Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
Additive Manufacturing of Geopolymer for Sustainable Built Environment - Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay - Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2020-01)
Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nano-Clay and Nucleation-Seeds for 3D Printing - Panda Biranchi, Tan Ming (2018-03)
Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing - Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing - Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing - Rehman Atta, Kim Jung-Hoon (2021-07)
3D Concrete Printing:
A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Shahmirzadi Mohsen, Gholampour Aliakbar, Kashani Alireza, Ngo Tuan (2021-09)
Shrinkage Behavior of Cementitious 3D Printing Materials:
Effect of Temperature and Relative Humidity - Sikora Paweł, Chougan Mehdi, Cuevas Villalobos Karla, Liebscher Marco et al. (2021-02)
The Effects of Nano- and Micro-Sized Additives on 3D Printable Cementitious and Alkali-Activated Composites:
A Review - Song Hongwei, Li Xinle (2021-05)
An Overview on the Rheology, Mechanical Properties, Durability, 3D Printing, and Microstructural Performance of Nanomaterials in Cementitious Composites - Ting Guan, Tay Yi, Qian Ye, Tan Ming (2019-03)
Utilization of Recycled Glass for 3D Concrete Printing:
Rheological and Mechanical Properties - Xiao Jianzhuang, Zou Shuai, Yu Ying, Wang Yu et al. (2020-09)
3D Recycled Mortar Printing:
System-Development, Process-Design, Material-Properties and On-Site-Printing - Yao Yue, Hu Mingming, Maio Francesco, Cucurachi Stefano (2019-08)
Life Cycle Assessment of 3D Printing Geopolymer Concrete:
An Ex‐Ante Study
12 Citations
- Shilar Fatheali, Shilar Mubarakali (2025-12)
Performance-Based Analysis of 3D Printed Geopolymers Relating Durability, Microstructure, and Life Cycle Assessment - Jiang Youbau, Wen Jun, Gao Pengxiang, Liu Yan et al. (2025-09)
Effect of Graphene Oxide on Physical and Mechanical Properties of 3D Printed Concrete - Si Wen, Carr Liam, Zia Asad, Khan Mehran et al. (2025-08)
Advancing 3D Printable Concrete with Nanoclays:
Rheological and Mechanical Insights for Construction Applications - Jaji Mustapha, Babafemi Adewumi, Zijl Gideon (2025-05)
Mechanical Performance of Extrusion-Based Two-Part 3D-Printed Geopolymer Concrete:
A Review of Advances in Laboratory and Real-Scale Construction Projects - Ali Shah Syed, Zhang Shipeng, Xuan Dongxing, Poon Chi (2025-04)
Development of a Novel Mixing Strategy for Set-on-Demand Printing of One-Part Geopolymer Using Municipal Solid Waste Incineration Bottom Ash and Blast Furnace Slag - Bayat Hamid, Karimpouli Sagegh, Yang Liming, Ramandi Hamed et al. (2025-02)
Investigation of Interlayer Bonding and Pore Characteristics in 3D-Printed High-Strength Mortar Incorporating Recycled Lightweight Aggregates - Tarhan Yeşim, Tarhan İsmail, Şahin Remzi (2024-12)
Comprehensive Review of Binder Matrices in 3D Printing Construction:
Rheological Perspectives - Kozub Barbara, Sitarz Mateusz, Gądek Szymon, Ziejewska Celina et al. (2024-11)
Upscaling of Copper Slag-Based Geopolymer to 3D Printing Technology - Murali Gunasekaran, Leong Sing (2024-11)
Waste-Driven Construction:
A State of the Art Review on the Integration of Waste in 3D Printed Concrete in Recent Researches for Sustainable Development - Jin Peng, Hasany Masoud, Kohestanian Mohammad, Mehrali Mehdi (2024-10)
Micro/Nano Additives in 3D Printing Concrete:
Opportunities, Challenges, and Potential Outlook in Construction Applications - Han Kang, Gu Fei, Yang Huashan, Tian Xinchen et al. (2024-09)
PVA-Fiber-Reinforced Red Mud-Based Geopolymer for 3D Printing:
Printability, Mechanical Properties and Microanalysis - Jaji Mustapha, Zijl Gideon, Babafemi Adewumi (2024-03)
Durability and Pore-Structure of Metakaolin-Based 3D Printed Geopolymer Concrete
BibTeX
@article{shah_ghol_kash_ngo.2023.GMfUiC3P,
author = "Mohsen Rezaei Shahmirzadi and Aliakbar Gholampour and Alireza Kashani and Tuan D. Ngo",
title = "Geopolymer Mortars for Use in Construction 3D Printing: Effect of LSS, Graphene-Oxide and Nano-Clay at Different Environmental Conditions",
doi = "10.1016/j.conbuildmat.2023.133967",
year = "2023",
journal = "Construction and Building Materials",
volume = "409",
pages = "133967",
}
Formatted Citation
M. R. Shahmirzadi, A. Gholampour, A. Kashani and T. D. Ngo, “Geopolymer Mortars for Use in Construction 3D Printing: Effect of LSS, Graphene-Oxide and Nano-Clay at Different Environmental Conditions”, Construction and Building Materials, vol. 409, p. 133967, 2023, doi: 10.1016/j.conbuildmat.2023.133967.
Shahmirzadi, Mohsen Rezaei, Aliakbar Gholampour, Alireza Kashani, and Tuan D. Ngo. “Geopolymer Mortars for Use in Construction 3D Printing: Effect of LSS, Graphene-Oxide and Nano-Clay at Different Environmental Conditions”. Construction and Building Materials 409 (2023): 133967. https://doi.org/10.1016/j.conbuildmat.2023.133967.