Skip to content

The Evaluation of Rheological Parameters of 3D Printable Concretes and the Effect of Accelerating-Admixture (2021-01)

10.1016/j.conbuildmat.2020.122221

 Rubin Ariane,  Hasse Jéssica,  Repette Wellington
Journal Article - Construction and Building Materials, Vol. 276

Abstract

Direct shear test and rotational rheometry were performed and compared as methods to estimate the rheological parameters of 3D printable concretes. For this, 3 concrete mixes, having a cohesive flow nature were produced with different proportions of accelerating admixtures, in order to evaluate the improvement on the yield strength gain of said mixes. Results have shown that both methods can predict the fresh state evolution of concrete. However, the obtained values for yield strength on the rotational rheometry tests were higher than those collected on the direct shear test. The yield stress for some concretes tends to evolve linearly with increasing resting time, and when using accelerating admixtures, the increase becomes exponential, even during the first few minutes, due to the high ettringite formation caused by the accelerator action. A model for the exponential evolution of the yield stress is proposed and an analytical model, which predicts the buildability capacity of printable concretes, is reviewed and updated.

27 References

  1. Bentz Dale, Jones Scott, Bentz Isaiah, Peltz Max (2018-06)
    Towards the Formulation of Robust and Sustainable Cementitious Binders for 3D Additive Construction by Extrusion
  2. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  3. Casagrande Lorenzo, Esposito Laura, Menna Costantino, Asprone Domenico et al. (2020-02)
    Effect of Testing Procedures on Buildability Properties of 3D Printable Concrete
  4. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
    Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing
  5. Jayathilakage Roshan, Sanjayan Jay, Rajeev Pathmanathan (2019-01)
    Direct-Shear-Test for the Assessment of Rheological Parameters of Concrete for 3D Printing Applications
  6. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  7. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    3D Concrete Printing:
    A Lower-Bound Analytical Model for Buildability-Performance-Quantification
  8. Labonnote Nathalie, Rønnquist Anders, Manum Bendik, Rüther Petra (2016-09)
    Additive Construction:
    State of the Art, Challenges and Opportunities
  9. Mai (née Dressler) Inka, Freund Niklas, Lowke Dirk (2020-01)
    The Effect of Accelerator Dosage on Fresh Concrete Properties and on Inter-Layer Strength in Shotcrete 3D Printing
  10. Malaeb Zeina, Sakka Fatima, Hamzeh Farook (2019-02)
    3D Concrete Printing:
    Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups
  11. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  12. Panda Biranchi, Lim Jian, Tan Ming (2019-02)
    Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction
  13. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  14. Perrot Arnaud, Amziane Sofiane (2019-04)
    3D Printing in Concrete:
    General Considerations and Technologies
  15. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  16. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  17. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  18. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  19. Suiker Akke (2018-01)
    Mechanical Performance of Wall Structures in 3D Printing Processes:
    Theory, Design Tools and Experiments
  20. Vaitkevičius Vitoldas, Šerelis Evaldas, Kerševičius Vidas (2018-03)
    Effect of Ultra-Sonic Activation on Early Hydration Process in 3D Concrete Printing Technology
  21. Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
    Digital Concrete:
    Opportunities and Challenges
  22. Wolfs Robert, Bos Freek, Salet Theo (2018-06)
    Correlation Between Destructive Compression Tests and Non-Destructive Ultrasonic Measurements on Early-Age 3D Printed Concrete
  23. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  24. Wolfs Robert, Bos Freek, Salet Theo (2019-06)
    Triaxial Compression Testing on Early-Age Concrete for Numerical Analysis of 3D Concrete Printing
  25. Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
    A Critical Review of the Use of 3D Printing in the Construction Industry
  26. Zareiyan Babak, Khoshnevis Behrokh (2017-06)
    Inter-Layer Adhesion and Strength of Structures in Contour Crafting:
    Effects of Aggregate-Size, Extrusion-Rate, and Layer-Thickness
  27. Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
    A Review of the Current Progress and Application of 3D Printed Concrete

23 Citations

  1. Zafar Muhammad, Javadnejad Farid, Hojati Maryam (2025-07)
    Optimizing Rheological Properties of 3D Printed Cementitious Materials via Ensemble Machine Learning
  2. Lamb Bannon, Sabih Gauhar (2025-06)
    Advancements in 3D Concrete Printing Materials
  3. Kandagaddala Revanth, Boddepalli Uday, Nanthagopalan Prakash (2025-05)
    Novel Rheological Test Procedure for Printability Characterization of 3D Printable Mortar
  4. Gulati Hemant, Lu Tianxing (2025-03)
    Customized 3D Printable Concrete:
    A Systematic Review of Challenges, Methodologies, and Adoption Strategies
  5. Tarhan Yeşim, Tarhan İsmail, Şahin Remzi (2024-12)
    Comprehensive Review of Binder Matrices in 3D Printing Construction:
    Rheological Perspectives
  6. Yasin Mazhar, Siddiqi Zahid, Ur Rehman Atteq, Noshin Sadaf et al. (2024-11)
    Innovative Early-Age Mechanical Properties of 3D Printable Mortar Enhanced with SBR-Latex and Kaolin
  7. Seo Eun-A, Lee Hojae (2024-10)
    Influence of Chemical Admixtures on Buildability and Deformation of Concrete for Additive Manufacturing
  8. Asaf Ofer, Bentur Arnon, Amir Oded, Larianovsky Pavel et al. (2024-09)
    A 3D Printing Platform for Design and Manufacturing of Multi-Functional Cementitious Construction Components and Its Validation for a Post-Tensioned Beam
  9. Birru Bizu, Rehman Atta, Kim Jung-Hoon (2024-06)
    Comparative Analysis of Structural Build-Up in One-Component Stiff and Two-Component Shotcrete-Accelerated Set-on-Demand Mixtures for 3D Concrete Printing
  10. Luo Surong, Li Wenqiang, Wang Dehui (2024-05)
    Study on Bending Performance of 3D Printed PVA-Fiber-Reinforced Cement-Based Material
  11. Abbaoui Khalid, Korachi Issam, Jai Mostapha, Šeta Berin et al. (2024-04)
    3D Concrete Printing Using Computational Fluid Dynamics:
    Modeling of Material-Extrusion with Slip-Boundaries
  12. Zhang Hanghua, Tan Yanke, Hao Lucen, Zheng Shipeng et al. (2024-02)
    Intelligent Real-Time Quality-Control for 3D Printed Concrete with Near-Nozzle Secondary-Mixing
  13. Gao Huaxing, Chen Yuxuan, Chen Qian, Yu Qingliang (2023-11)
    Thermal and Mechanical Performance of 3D Printing Functionally Graded Concrete:
    The Role of SAC on the Rheology and Phase Evolution of 3DPC
  14. Arrêteau Manon, Fabien Aurélie, Haddaji Badreddine, Chateigner Daniel et al. (2023-07)
    Review of Advances in 3D Printing Technology of Cementitious Materials:
    Key Printing Parameters and Properties Characterization
  15. Rehman Atta, Melesse Birru, Kim Jung-Hoon (2023-02)
    Set-on-Demand 3D Concrete Printing Construction and Potential Outcome of Shotcrete-Accelerators on Its Hardened Properties
  16. Harbouz Ilhame, Yahia Ammar, Rozière Emmanuel, Loukili Ahmed (2023-02)
    Printing Quality-Control of Cement-Based Materials Under Flow and Rest-Conditions
  17. Basha Shaik, Rehman Atta, Aziz Md, Kim Jung-Hoon (2023-02)
    Cement Composites with Carbon-Based Nanomaterials for 3D Concrete Printing Applications:
    A Review
  18. Rubin Ariane, Quintanilha Lucas, Repette Wellington (2022-11)
    Influence of Structuration-Rate, with Hydration-Accelerating Admixture, on the Physical and Mechanical Properties of Concrete for 3D Printing
  19. Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
    Rheology and Printability of Portland-Cement-Based Materials:
    A Review
  20. Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
    Test-Methods for 3D Printable Concrete
  21. Aydin Eylül, Kara Burhan, Bundur Zeynep, Özyurt Nilüfer et al. (2022-08)
    A Comparative Evaluation of Sepiolite and Nano-Montmorillonite on the Rheology of Cementitious Materials for 3D Printing
  22. Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2022-06)
    Criticality of Microstructural Evolution at an Early-Age on the Buildability of an Accelerated 3D Printable Concrete
  23. Bhattacherjee Shantanu, Santhanam Manu (2022-04)
    Investigation on the Effect of Alkali-Free Aluminium Sulfate-Based Accelerator on the Fresh Properties of 3D Printable Concrete

BibTeX
@article{rubi_hass_repe.2021.TEoRPo3PCatEoAA,
  author            = "Ariane Prevedello Rubin and Jéssica Amanda Hasse and Wellington Longuini Repette",
  title             = "The Evaluation of Rheological Parameters of 3D Printable Concretes and the Effect of Accelerating-Admixture",
  doi               = "10.1016/j.conbuildmat.2020.122221",
  year              = "2021",
  journal           = "Construction and Building Materials",
  volume            = "276",
}
Formatted Citation

A. P. Rubin, J. A. Hasse and W. L. Repette, “The Evaluation of Rheological Parameters of 3D Printable Concretes and the Effect of Accelerating-Admixture”, Construction and Building Materials, vol. 276, 2021, doi: 10.1016/j.conbuildmat.2020.122221.

Rubin, Ariane Prevedello, Jéssica Amanda Hasse, and Wellington Longuini Repette. “The Evaluation of Rheological Parameters of 3D Printable Concretes and the Effect of Accelerating-Admixture”. Construction and Building Materials 276 (2021). https://doi.org/10.1016/j.conbuildmat.2020.122221.