Skip to content

Influences of Printing-Pattern on Mechanical Performance of Three-Dimensional-Printed Fiber-Reinforced Concrete (2022-02)

10.1089/3dp.2020.0172

Pham Luong, Lu Guoxing,  Tran Jonathan
Journal Article - 3D Printing and Additive Manufacturing, Vol. 9, Iss. 1, pp. 46-63

Abstract

Underperformed interfacial bond and anisotropic properties are often observed in three-dimensional-printed concrete, where the printing pattern is unidirectional. Such issues could be potentially alleviated by replicating microstructures of natural materials or applying different architectures, where printed layers are arranged into unique and unconventional patterns. Furthermore, the quest to develop printing methods for highly complex or self-support concrete architecture could benefit from these nature-inspired patterns. In this work, the influences of different architectural arrangements of layers on mechanical properties of hardened concrete on compressive and flexural strengths are investigated. Specifically, unidirectional (0), cross-ply (0/90), quasi-isotropic (0/ –45/90), and helicoidal patterns (with pitch angles of 10,20, and 30) are used to create unidirectional, bidirectional, and multidirectional layers in printed objects without and with 0.75% by volume of 6 mm-long steel fibers. The experimental results demonstrate considerable improvements in the flexural strengths of nontraditional specimens without steel fibers over the unidirectional control with a few exceptions. Among investigated patterns, the quasiisotropic demonstrates significant influences in both compressive and flexural responses of printed concrete samples without steel fibers. The addition of steel fibers leads to noticeable improvement on both compressive and flexural strengths of samples in any pattern compared with their counterparts without fibers. Besides, the inclusion of steel fibers into unconventional layups (cross-ply, quasi-isotropic, and helicoidal patterns) leads to the alleviation of directional dependence of mechanical properties, which is a limitation of the unidirectional samples with fibers. Of all helicoidal patterns, the one with a 10-angle layup is shown to be more beneficial to the flexural strength enhancement and damage resistance in bending. X-ray microcomputed tomography measurements are performed to visualize the direction and distribution of fibers.

20 References

  1. Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
    Mechanical Properties of Structures 3D Printed with Cementitious Powders
  2. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  3. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  4. Li Zhijian, Wang Li, Ma Guowei (2020-01)
    Mechanical Improvement of Continuous Steel-Micro-Cable-Reinforced Geopolymer Composites for 3D Printing Subjected to Different Loading Conditions
  5. Ma Guowei, Zhang Junfei, Wang Li, Li Zhijian et al. (2018-06)
    Mechanical Characterization of 3D Printed Anisotropic Cementitious Material by the Electromechanical Transducer
  6. Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
    Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification
  7. Moini Mohamadreza, Olek Jan, Youngblood Jeffrey, Magee Bryan et al. (2018-08)
    Additive Manufacturing and Performance of Architectured Cement-Based Materials
  8. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  9. Nerella Venkatesh, Mechtcherine Viktor (2019-02)
    Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D)
  10. Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
    Additive Manufacturing of Geopolymer for Sustainable Built Environment
  11. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  12. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  13. Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
    Steel-Fiber-Reinforced 3D Printed Concrete:
    Influence of Fiber Sizes on Mechanical Performance
  14. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  15. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2021-06)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete:
    Correction
  16. Tay Yi, Ting Guan, Qian Ye, Panda Biranchi et al. (2018-07)
    Time-Gap-Effect on Bond Strength of 3D Printed Concrete
  17. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  18. Zareiyan Babak, Khoshnevis Behrokh (2017-08)
    Effects of Interlocking on Inter-Layer Adhesion and Strength of Structures in 3D Printing of Concrete
  19. Zareiyan Babak, Khoshnevis Behrokh (2017-06)
    Inter-Layer Adhesion and Strength of Structures in Contour Crafting:
    Effects of Aggregate-Size, Extrusion-Rate, and Layer-Thickness
  20. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete

37 Citations

  1. Tong Zhongling, Guan Qingtao, Elabbasy Ahmed, Ateah Ali et al. (2025-12)
    Empowering 3D Printed Concrete:
    Discovering the Impact of Steel Fiber Reinforcement on Mechanical Performance
  2. Abbas Yassir, Alsaif Abdulaziz (2025-11)
    Explainable Data-Driven Modeling for Optimized Mix Design of 3D-Printed Concrete:
    Interpreting Nonlinear Synergies Among Binder Components and Proportions
  3. Liu Xiongfei, Wang Haonan, Chen Jinnan, Sun Yuhang et al. (2025-11)
    Fiber Orientation Control in Spray-Based 3D Printed Steel Fiber Reinforced Concrete
  4. Chen Wenguang, Yu Jie, Ye Junhong, Yu Jiangtao et al. (2025-11)
    3D Printed High-Performance Fiber-Reinforced Cementitious Composites:
    Fresh, Mechanical, and Microstructural Properties
  5. Verma Shilpi, Parghi Anant (2025-10)
    Machine Learning-Based Prediction of Compressive Strength in Additive Manufacturing of Concrete Technology
  6. Varghese Renny, Rangel Bárbara, Maia Lino (2025-10)
    Strength, Structure, and Sustainability in 3D-Printed Concrete Using Different Types of Fiber Reinforcements
  7. Barbhuiya Salim, Das Bibhuti, Adak Dibyendu (2025-09)
    Key Variables Influencing the Performance of 3D Printed Concrete:
    A Comprehensive Analysis
  8. Gerges Isabelle, Farraj Faten, Youssef Nicolas, Antczak Emmanuel et al. (2025-07)
    Methodologies to Design Optimum 3D Printable Mortar Mix:
    A Review
  9. Li Shuai, Liu Junli, Cheng Chi-Tsun, Xuan Hung et al. (2025-06)
    Design and Performance of 3D Printed Bouligand Steel Fiber-Reinforced Cementitious Composite Curved Beams
  10. Liu Junli, Hai Hoang, Tran Mien, Tran Jonathan (2025-04)
    Advancing Microstructural Insights in 3D-Printed Cementitious Materials via X-Ray Micro-Computed Tomography
  11. Yabanigül Meryem, Özer Derya (2024-12)
    Exploring Architectural Units Through Robotic 3D Concrete Printing of Space-Filling Geometries
  12. Li Shuai, Khieu Hai, Black Jay, Nguyen Hung-Xuan et al. (2024-12)
    Two-Scale 3D Printed Steel-Fiber-Reinforcements-Strategy for Concrete Structures
  13. Cai Jianguo, Wang Jingsong, Zhang Qian, Du Caixia et al. (2024-10)
    State of the Art of Mechanical Properties of 3D Printed Concrete
  14. Du Guoqiang, Qian Ye (2024-10)
    Bio-Inspired Innovations in 3D Concrete Printing:
    Structures, Materials and Applications
  15. Li Shuai, Lan Tian, Nguyen Hung-Xuan, Tran Jonathan (2024-10)
    Frontiers in Construction 3D Printing:
    Self-Monitoring, Multi-Robot, Drone-Assisted Processes
  16. Prihar Arjun, Gupta Shashank, Esmaeeli Hadi, Moini Mohamadreza (2024-08)
    Tough Double-Bouligand Architected Concrete Enabled by Robotic Additive Manufacturing
  17. Aghaee Kamran, Li Linfei, Roshan Alireza, Namakiaraghi Parsa (2024-08)
    Additive Manufacturing Evolution in Construction:
    From Individual Terrestrial to Collective, Aerial, and Extraterrestrial Applications
  18. Zhang Kaijian, Lin Wenqiang, Zhang Qingtian, Wang Dehui et al. (2024-07)
    Evaluation of Anisotropy and Statistical Parameters of Compressive Strength for 3D Printed Concrete
  19. Stout Ivy, Godfrey Grant, Dayley Jenna, Rodriguez Dexter et al. (2024-05)
    Concrete Mixture Properties and Designs for Additive Manufacturing:
    A Review of 3D Concrete Printing
  20. Chen Anguo, Dai Pengfei, Lyu Qifeng (2024-05)
    Effect of Alkalized Straw-Fibers on the Properties of Three Dimensional Printed Cementitious Composite
  21. Tripathi Avinaya, Nair Sooraj, Chauhan Harshitsinh, Neithalath Narayanan (2024-04)
    Print Geometry Alterations and Layer-Staggering to Enhance Mechanical Properties of Plain and Fiber-Reinforced Three-Dimensional-Printed Concrete
  22. Aramburu Amaia, Calderon-Uriszar-Aldaca Iñigo, Puente Iñigo, Castano-Alvarez Ruben (2024-03)
    Effects of 3D Printing on the Tensile Splitting Strength of Concrete Structures
  23. Xiao Jianzhuang, Liu Haoran, Ding Tao, Yu Kequan et al. (2024-02)
    Rebar-Free Concrete Construction:
    Concept, Opportunities and Challenges
  24. Nguyen Vuong, Tran Jonathan, Liu Junli, Tran Mien et al. (2024-02)
    Extended Finite Element Multi-Scale Modelling for Crack Propagation in 3D Printed Fiber-Reinforced Concrete
  25. Prihar Arjun, Garlock Maria, Najmeddine Aimane, Moini Mohamadreza (2024-01)
    Mechanical Performance of Sinusoidally Architected Concrete Enabled by Robotic Additive Manufacturing
  26. Moini Mohamadreza (2024-01)
    Perspectives in Architected Infrastructure Materials
  27. Sedghi Reza, Rashidi Kourosh, Hojati Maryam (2024-01)
    Large-Scale 3D Wall Printing:
    From Concept to Reality
  28. Warsi Syed, Panda Biranchi, Biswas Pankaj (2023-12)
    Exploring Fiber Addition Methods and Mechanical Properties of Fiber-Reinforced 3D Printed Concrete:
    A Review
  29. Ghasemi Alireza, Naser Mohannad (2023-07)
    Tailoring 3D Printed Concrete Through Explainable Artificial Intelligence
  30. Liu Junli, Tran Jonathan, Nguyen Vuong, Gunasekara Chamila et al. (2023-06)
    3D Printing of Cementitious Mortar with Milled Recycled Carbon-Fibers:
    Influences of Filament Offset on Mechanical Properties
  31. Wang Ziyue, Chen Zixuan, Xiao Jianzhuang, Ding Tao (2023-03)
    Experimental Study on Interfacial Shear Behavior of 3D Printed Recycled Mortar
  32. Nguyen Vuong, Li Shuai, Liu Junli, Nguyen Kien et al. (2022-11)
    Modelling of 3D Concrete Printing Process:
    A Perspective on Material and Structural Simulations
  33. Kan Deyuan, Liu Guifeng, Cao Shuang, Chen Zhengfa et al. (2022-11)
    Mechanical Properties and Pore-Structure of Multi-Walled Carbon-Nano-Tube-Reinforced Reactive Powder-Concrete for Three-Dimensional Printing Manufactured by Material-Extrusion
  34. Nguyen Vuong, Liu Junli, Li Shuai, Zhang Guomin et al. (2022-10)
    Modelling of 3D Printed Bio-Inspired Bouligand Cementitious Structures Reinforced with Steel-Fibers
  35. Liu Junli, Setunge Sujeeva, Tran Jonathan (2022-07)
    3D Concrete Printing with Cement-Coated Recycled Crumb Rubber:
    Compressive and Microstructural Properties
  36. Bi Minghao, Xia Lingwei, Tran Jonathan, Li Zhi et al. (2022-04)
    Continuous Contour-Zigzag Hybrid Tool-Path for Large-Format Additive Manufacturing
  37. Yalçınkaya Çağlar (2022-03)
    Influence of Hydroxypropyl Methylcellulose Dosage on the Mechanical Properties of 3D Printable Mortars with and without Fiber-Reinforcement

BibTeX
@article{pham_lu_tran.2022.IoPPoMPoTDPFRC,
  author            = "Luong Pham and Guoxing Lu and Jonathan Phuong Tran",
  title             = "Influences of Printing-Pattern on Mechanical Performance of Three-Dimensional-Printed Fiber-Reinforced Concrete",
  doi               = "10.1089/3dp.2020.0172",
  year              = "2022",
  journal           = "3D Printing and Additive Manufacturing",
  volume            = "9",
  number            = "1",
  pages             = "46--63",
}
Formatted Citation

L. Pham, G. Lu and J. P. Tran, “Influences of Printing-Pattern on Mechanical Performance of Three-Dimensional-Printed Fiber-Reinforced Concrete”, 3D Printing and Additive Manufacturing, vol. 9, no. 1, pp. 46–63, 2022, doi: 10.1089/3dp.2020.0172.

Pham, Luong, Guoxing Lu, and Jonathan Phuong Tran. “Influences of Printing-Pattern on Mechanical Performance of Three-Dimensional-Printed Fiber-Reinforced Concrete”. 3D Printing and Additive Manufacturing 9, no. 1 (2022): 46–63. https://doi.org/10.1089/3dp.2020.0172.