Skip to content

Penetration-Test of Sheet-Like Indenter for Yield-Stress-Assessment of 3D Printed Concrete (2024-11)

10.1016/j.cemconres.2024.107728

Lu Haoyu, Zhang Lizhi, Wang Junkai, Shi Zhaoxin,  She Wei,  Zuo Wenqiang
Journal Article - Cement and Concrete Research, Vol. 188, No. 107728

Abstract

The evolution of early mechanical properties of 3D-printed concrete (3DPC) plays a crucial role in early constructability, while current methods face challenges on the tradeoff between the accuracy and feasibility of mechanical properties characterization. In this paper, we designed a sheet-like indenter configuration to quantitatively obtain the yield stress of fresh 3DPC. First, we show the typical force-depth curve of sheet-like indenters obtained during the penetration test and analyze the main factors affecting the penetration resistance at various regimes. Then, we derive the quantitative correlation between the yield stress and the force-depth curve based on numerical simulation. Our results show that the slipping phenomenon between the indenter side and the material leads to an underestimation of the yield stress compared to the standard compression test and cone-shaped indenter. We moreover propose a sheet-like indenter with surface roughness modification to obtain the accurate yield stress value, together with a formula for the yield stress calculation based on the force-depth curve. Finally, we assess the feasibility of the proposed approach, which can robustly predict fresh 3DPC with yield stresses in the range of 1–100 kPa.

33 References

  1. Agustí-Juan Isolda, Müller Florian, Hack Norman, Wangler Timothy et al. (2017-04)
    Potential Benefits of Digital Fabrication for Complex Structures:
    Environmental Assessment of a Robotically Fabricated Concrete Wall
  2. Ahmed Ghafur (2023-01)
    A Review of 3D Concrete Printing:
    Materials and Process Characterization, Economic Considerations and Environmental Sustainability
  3. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  4. Chen Mingxu, Li Laibo, Zheng Yan, Zhao Piqi et al. (2018-09)
    Rheological and Mechanical Properties of Admixtures-Modified 3D Printing Sulphoaluminate Cementitious Materials
  5. Ducoulombier Nicolas, Mesnil Romain, Carneau Paul, Demont Léo et al. (2021-05)
    The “Slugs-Test” for Extrusion-Based Additive Manufacturing:
    Protocol, Analysis and Practical Limits
  6. Ham Namhyuk, Lee Sanghyo (2019-01)
    Project Benefits of Digital Fabrication in Irregular-Shaped Buildings
  7. Hassan Habibelrahman, Rodriguez-Ubinas Edwin, Tamimi Adil, Trepci Esra et al. (2024-04)
    Towards Innovative and Sustainable Buildings:
    A Comprehensive Review of 3D Printing in Construction
  8. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  9. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    3D Concrete Printing:
    A Lower-Bound Analytical Model for Buildability-Performance-Quantification
  10. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  11. Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
    Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing
  12. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  13. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  14. Menna Costantino, Mata-Falcón Jaime, Bos Freek, Vantyghem Gieljan et al. (2020-04)
    Opportunities and Challenges for Structural Engineering of Digitally Fabricated Concrete
  15. Mohamed Rania, Mohamed Abdelaziz (2024-05)
    Exploring the Environmental Benefits of 3D Printing Technology in Concrete Construction:
    A Review
  16. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
    Extrusion-Based Concrete 3D Printing from a Material Perspective:
    A State of the Art Review
  17. Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
    Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
    A Review
  18. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  19. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  20. Reiter Lex, Wangler Timothy, Roussel Nicolas, Flatt Robert (2022-04)
    Slow Penetration for Characterizing Concrete for Digital Fabrication
  21. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  22. Roussel Nicolas, Buswell Richard, Ducoulombier Nicolas, Ivanova Irina et al. (2022-06)
    Assessing the Fresh Properties of Printable Cement-Based Materials:
    High-Potential Tests for Quality-Control
  23. Suiker Akke, Wolfs Robert, Lucas Sandra, Salet Theo (2020-06)
    Elastic Buckling and Plastic Collapse During 3D Concrete Printing
  24. Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
    3D Printing Trends in Building and Construction Industry:
    A Review
  25. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  26. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  27. Wolfs Robert, Bos Freek, Salet Theo (2018-06)
    Correlation Between Destructive Compression Tests and Non-Destructive Ultrasonic Measurements on Early-Age 3D Printed Concrete
  28. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  29. Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
    A Critical Review of the Use of 3D Printing in the Construction Industry
  30. Zhang Ketao, Chermprayong Pisak, Xiao Feng, Tzoumanikas Dimos et al. (2022-09)
    Aerial Additive Manufacturing with Multiple Autonomous Robots
  31. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  32. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink
  33. Zhao Yu, Yang Guang, Zhu Lingli, Ding Yahong et al. (2022-10)
    Effects of Rheological Properties and Printing Speed on Molding Accuracy of 3D Printing Basalt-Fiber Cementitious Materials

3 Citations

  1. Caneda-Martínez Laura, Hassan M., Demont Léo, Keita Emmanuel et al. (2026-01)
    Fast Penetration Testing of Printable Concretes with a Portable Device:
    Robustness and Calibration
  2. Zhang Jiao-Long, Yuan Yong, Fatoyinbo Imoleayo, Zhou Lujie et al. (2025-11)
    3D-Printable Mortars Incorporating Municipal Solid Waste Incineration Bottom Ash:
    Linking Hydration to Extrudability and Mechanical Performance
  3. Barry Mamadou, Jacquet Yohan, Perrot Arnaud (2025-10)
    Pocket Vane and Penetrometer as Quality Control Tool for Extrusion 3D Concrete Printing

BibTeX
@article{lu_zhan_wang_shi.2025.PToSLIfYSAo3PC,
  author            = "Haoyu Lu and Lizhi Zhang and Junkai Wang and Zhaoxin Shi and Wei She and Wenqiang Zuo",
  title             = "Penetration-Test of Sheet-Like Indenter for Yield-Stress-Assessment of 3D Printed Concrete",
  doi               = "10.1016/j.cemconres.2024.107728",
  year              = "2025",
  journal           = "Cement and Concrete Research",
  volume            = "188",
  pages             = "107728",
}
Formatted Citation

H. Lu, L. Zhang, J. Wang, Z. Shi, W. She and W. Zuo, “Penetration-Test of Sheet-Like Indenter for Yield-Stress-Assessment of 3D Printed Concrete”, Cement and Concrete Research, vol. 188, p. 107728, 2025, doi: 10.1016/j.cemconres.2024.107728.

Lu, Haoyu, Lizhi Zhang, Junkai Wang, Zhaoxin Shi, Wei She, and Wenqiang Zuo. “Penetration-Test of Sheet-Like Indenter for Yield-Stress-Assessment of 3D Printed Concrete”. Cement and Concrete Research 188 (2025): 107728. https://doi.org/10.1016/j.cemconres.2024.107728.