Skip to content

The Influence of Interface on the Structural Stability in 3D Concrete Printing Processes (2021-11)

10.1016/j.addma.2021.102456

 Liu Xuanting,  Sun Bohua
Journal Article - Additive Manufacturing, Vol. 48

Abstract

Due to its advantages in rapid manufacturing, Three-dimensional concrete printing (3DCP) technology has developed rapidly in the past several decades. However, there are still many problems to be solved in the printing process. For example, many 3DCP structures failed during printing processes due to stability problems. There are still various shortcomings in the current stability research, among which the most significant is the inability to accurately predict the printing failure height. In this paper, a numerical model is established to predict the buckling failure of a 3DCP cylinder under its dead weight, and the effect of the interfacial area on the structural stability is analyzed. The results showed that the concept of the interfacial area solves the problem that the failure height predicted by the simulation is not consistent with experiments. Second, more detailed 3DCP structural behaviors are discussed, including the influence of the layer cross-sectional geometry on the stability, the influence of the structural deformation on the print path, and the development of the failure mode. Finally, the influences of the relevant printing parameters on the structural stability are evaluated. The results indicate that the interface is an important index that should be used to evaluate the structural stability in 3D concrete printing processes.

22 References

  1. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  2. Casagrande Lorenzo, Esposito Laura, Menna Costantino, Asprone Domenico et al. (2020-02)
    Effect of Testing Procedures on Buildability Properties of 3D Printable Concrete
  3. Cesaretti Giovanni, Dini Enrico, Kestelier Xavier, Colla Valentina et al. (2013-08)
    Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology
  4. Comminal Raphaël, Serdeczny Marcin, Pedersen David, Spangenberg Jon (2019-06)
    Motion-Planning and Numerical Simulation of Material-Deposition at Corners in Extrusion Additive Manufacturing
  5. Comminal Raphaël, Silva Wilson, Andersen Thomas, Stang Henrik et al. (2020-10)
    Modelling of 3D Concrete Printing Based on Computational Fluid Dynamics
  6. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
    Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing
  7. Khoshnevis Behrokh, Dutton Rosanne (1998-01)
    Innovative Rapid Prototyping Process Makes Large-Sized, Smooth-Surfaced Complex Shapes in a Wide Variety of Materials
  8. Kruger Jacques, Cho Seung, Zeranka Stephan, Vintila Cristian et al. (2019-12)
    3D Concrete Printer Parameter Optimization for High-Rate Digital Construction Avoiding Plastic Collapse
  9. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    3D Concrete Printing:
    A Lower-Bound Analytical Model for Buildability-Performance-Quantification
  10. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2020-04)
    A Rheology-Based Quasi-Static Shape-Retention-Model for Digitally Fabricated Concrete
  11. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  12. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
    Extrusion-Based Concrete 3D Printing from a Material Perspective:
    A State of the Art Review
  13. Nair Sooraj, Panda Subhashree, Santhanam Manu, Sant Gaurav et al. (2020-05)
    A Critical Examination of the Influence of Material-Characteristics and Extruder-Geometry on 3D Printing of Cementitious Binders
  14. Ooms Ticho, Vantyghem Gieljan, Coile Ruben, Corte Wouter (2020-12)
    A Parametric Modelling-Strategy for the Numerical Simulation of 3D Concrete Printing with Complex Geometries
  15. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  16. Roussel Nicolas, Spangenberg Jon, Wallevik Jon, Wolfs Robert (2020-06)
    Numerical Simulations of Concrete Processing:
    From Standard Formative Casting to Additive Manufacturing
  17. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  18. Suiker Akke (2018-01)
    Mechanical Performance of Wall Structures in 3D Printing Processes:
    Theory, Design Tools and Experiments
  19. Vantyghem Gieljan, Ooms Ticho, Corte Wouter (2020-11)
    VoxelPrint:
    A Grasshopper Plug-In for Voxel-Based Numerical Simulation of Concrete Printing
  20. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  21. Wolfs Robert, Bos Freek, Salet Theo (2019-06)
    Triaxial Compression Testing on Early-Age Concrete for Numerical Analysis of 3D Concrete Printing
  22. Wolfs Robert, Suiker Akke (2019-06)
    Structural Failure During Extrusion-Based 3D Printing Processes

24 Citations

  1. González-Aviña J., Hosseinpoor Masoud, Yahia Ammar, Kohandelnia Mojtaba et al. (2025-10)
    Anionic Biopolymers to Enhance Concrete Rheological Properties for 3D Printing Applications
  2. Chen Baixi, Yang Lei, Jiang Sheng (2025-09)
    Stochastic Analysis of 3D Concrete Printing Process with Curvature and Inclination by Explainable Data-Driven Modelling
  3. Geng Shao-bo, Zhang Chen, Zhang Hui, Hai Lu et al. (2025-08)
    Upcycling Coal Gangue Coarse Aggregates into 3D Printed Concrete:
    Multi-Scale Mechanisms of Fracture Behaviour
  4. Xiahou Xiaer, Ding Xingyuan, Yu Ke-Ke, Lu Cong (2025-08)
    From Waste to Strength:
    Sustainable Valorization of Modified Recycled PET Fibers for Rheological Control and Performance Enhancement in 3D Printed Concrete
  5. Zuo Zibo, Huang Yulin, Corte Wouter (2025-06)
    Real-Time Monitoring of Printed Concrete Weight During 3D Concrete Printing to Inversely Assess Process Stability:
    Indicators and Experiments
  6. Chen Qinbin, Barbat Gabriel, Cervera Miguel (2025-06)
    Finite Element Buildability Analysis of 3D Printed Concrete Including Failure by Elastic Buckling and Plastic Flow
  7. Park Ji-seul, Jeong Seung-Su, Hong Seungkee, Lee Seohyung et al. (2025-02)
    Mechanical Modeling for Prediction of Structural Stability of Cylindrical Structures During 3D Concrete Printing
  8. Wang Li, Lin Wenyu, Wan Qian, Li Zhijian et al. (2024-11)
    Manufacturing Accuracy Improvement of Concrete Product by Hybrid Additive-Subtractive Method Based on the Time-Dependent Characteristics of Cementitious Materials
  9. Chen Baixi, Qian Xiaoping (2024-09)
    Data-Driven Reliability-Oriented Buildability-Analysis of 3D Concrete Printed Curved Wall
  10. Shivendra Bandoorvaragerahalli, Sharath Chandra Sathvik, Singh Atul, Kumar Rakesh et al. (2024-09)
    A Path Towards SDGs:
    Investigation of the Challenges in Adopting 3D Concrete Printing in India
  11. Chen Baixi, Zhao Xueqi, Qian Xiaoping (2024-09)
    Voxel-Based Path-Driven 3D Concrete Printing Process Simulation Framework Embedding Inter-Layer Behavior
  12. Sun Chang, Li Jiawang, Liu Qiong, Chen Kailun et al. (2024-07)
    Compressive Performance and Damage Mechanism of Concrete Short Columns Confined by Steel-Wires-Reinforced 3DPM
  13. Shahzad Qamar, Abbas Nadeem, Akbar Muhammad, Sabi Ehab et al. (2024-03)
    Influence of Print-Speed and Nozzle-Diameter on the Fiber-Alignment in 3D Printed Ultra-High-Performance Concrete
  14. An Dong, Zhang Yixia, Yang Chunhui (2023-11)
    Numerical Modelling of 3D Concrete Printing:
    Material-Models, Boundary-Conditions and Failure-Identification
  15. Vele Jiří, Kurilla Lukáš, Achten Henri (2023-09)
    Improving Buildability of Overhangs of 3D Printed Objects Through Non-Planar Slicing Informed by Force-Flow-Analysis
  16. Cuevas Villalobos Karla, Weinhold Joachim, Stephan Dietmar, Kim Ji-Su (2023-09)
    Effect of Printing-Patterns on Pore-Related Microstructural Characteristics and Properties of Materials for 3D Concrete Printing Using In-Situ and Ex-Situ Imaging-Techniques
  17. Wang Qing, Ren Xiaodan, Li Jie (2023-08)
    Damage-Rheology Model for Predicting 3D Printed Concrete Buildability
  18. Zhu Lingli, Zhang Meng, Zhang Yaqi, Yao Jie et al. (2023-07)
    Research Progress on Shrinkage Properties of Extruded 3D Printed Cement-Based Materials
  19. Pietras Daniel, Zbyszyński Wojciech, Sadowski Tomasz (2023-06)
    A 3D Printing Method of Cement-Based FGM Composites Containing Granulated Cork, Polypropylene Fibers, and a Polyethylene Net Inter-Layer
  20. Shahzad Qamar, Li Fangyuan (2023-05)
    The Influence of Print-Path on Early-Age Plastic Bearing-Capacity and Mechanical Behavior of 3D Printed Concrete:
    A Novel Approach for Practical Applications
  21. Cruz Gil, Dizon John, Farzadnia Nima, Zhou Hongyu et al. (2023-04)
    Performance, Applications, and Sustainability of 3D Printed Cement and Other Geomaterials
  22. Liu Xiongfei, Li Jixiang, Li Qi, Hou Gunayu (2022-11)
    Mechanical Performance Optimization in Spray-Based Three-Dimensional-Printed Mortar Using Carbon-Fiber
  23. Yang Rijiao, Zhu Yi, Lan Yan, Zeng Qiang et al. (2022-10)
    Differences in Micro Grain & Fiber-Distributions Between Matrix and Inter-Layer of Cementitious Filaments Affected by Extrusion-Molding
  24. Ziejewska Celina, Marczyk Joanna, Korniejenko Kinga, Bednarz Sebastian et al. (2022-04)
    3D Printing of Concrete-Geopolymer Hybrids

BibTeX
@article{liu_sun.2021.TIoIotSSi3CPP,
  author            = "Xuanting Liu and Bohua Sun",
  title             = "The Influence of Interface on the Structural Stability in 3D Concrete Printing Processes",
  doi               = "10.1016/j.addma.2021.102456",
  year              = "2021",
  journal           = "Additive Manufacturing",
  volume            = "48",
}
Formatted Citation

X. Liu and B. Sun, “The Influence of Interface on the Structural Stability in 3D Concrete Printing Processes”, Additive Manufacturing, vol. 48, 2021, doi: 10.1016/j.addma.2021.102456.

Liu, Xuanting, and Bohua Sun. “The Influence of Interface on the Structural Stability in 3D Concrete Printing Processes”. Additive Manufacturing 48 (2021). https://doi.org/10.1016/j.addma.2021.102456.