Deformation of Inclined Concrete 3D Printing (2025-09)¶
10.1016/j.cemconres.2025.108032
Lian Hongqian,
Journal Article - Cement and Concrete Research, Vol. 199, No. 108032
Abstract
Current extrusion-based 3D printing technologies for concrete are ill suited for constructing complex geometric structures featuring curved or inclined surfaces. In this study, one 3D concrete printing model based on computational fluid dynamics (CFD) was established. The concrete fluid model was simulated via the Bingham rheological model. After validating the model's accuracy through experimental data, the effects of variables such as the inclination angle, printing speed, and layer height on the deformation of 3D printed concrete structures with inclined angles was investigated. Our findings reveal that both the layer height and inclination angle exert the most significant influence on the deformation and stability of concrete structures, whereas increasing the printing speed exacerbates deformation. Within the parameter range explored in this study, an increase in the inclination angle markedly enhances the deformation of the concrete structure. Furthermore, reducing the layer height substantially mitigates deformation and improves structural stability.
¶
39 References
- Ahmed Ghafur (2023-01)
A Review of 3D Concrete Printing:
Materials and Process Characterization, Economic Considerations and Environmental Sustainability - Ashrafi Negar, Nazarian Shadi, Meisel Nicholas, Duarte José (2021-08)
Experimental Calibration and Compensation for the Continuous Effect of Time, Number of Layers and Volume of Material on Shape Deformation in Small-Scale Additive Manufacturing of Concrete - Ashrafi Negar, Nazarian Shadi, Meisel Nicholas, Duarte José (2020-10)
Experimental Prediction of Material-Deformation in Large-Scale Additive Manufacturing of Concrete - Bai Meiyan, Wu Yuching, Xiao Jianzhuang, Ding Tao et al. (2023-04)
Workability and Hardened Properties of 3D Printed Engineered Cementitious Composites Incorporating Recycled Sand and PE-Fibers - Bhushan Jindal Bharat, Jangra Parveen (2023-05)
3D Printed Concrete:
A Comprehensive Review of Raw Material’s Properties, Synthesis, Performance, and Potential Field Applications - Bos Freek, Menna Costantino, Pradena Mauricio, Kreiger Eric et al. (2022-03)
The Realities of Additively Manufactured Concrete Structures in Practice - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Chang Ze, Chen Yu, Schlangen Erik, Šavija Branko (2023-09)
A Review of Methods on Buildability Quantification of Extrusion-Based 3D Concrete Printing:
From Analytical Modelling to Numerical Simulation - Comminal Raphaël, Silva Wilson, Andersen Thomas, Stang Henrik et al. (2020-10)
Modelling of 3D Concrete Printing Based on Computational Fluid Dynamics - Dey Dhrutiman, Sahu Akshay, Prakash Srajan, Panda Biranchi (2023-03)
A Study into the Effect of Material-Deposition-Methods on Hardened Properties of 3D Printed Concrete - Ding Tao, Shen Kaige, Cai Chen, Xiao Jianzhuang et al. (2024-02)
3D Printed Concrete with Sewage Sludge Ash:
Fresh and Hardened Properties - Du Longyu, Zhou Jiehang, Lai Jianzhong, Wu Kai et al. (2023-07)
Effect of Pore-Structure on Durability and Mechanical Performance of 3D Printed Concrete - Gaudillière-Jami Nadja, Duballet Romain, Bouyssou Charles, Mallet Alban et al. (2018-09)
Large-Scale Additive Manufacturing of Ultra-High-Performance Concrete of Integrated Formwork for Truss-Shaped Pillars - Jiang Quan, Liu Qiang, Wu Si, Zheng Hong et al. (2022-06)
Modification Effect of Nano-Silica and Polypropylene-Fiber for Extrusion-Based 3D Printing Concrete:
Printability and Mechanical Anisotropy - Li Shuai, Nguyen-Xuan Hung, Tran Jonathan (2022-11)
Digital Design and Parametric Study of 3D Concrete Printing on Non-Planar Surfaces - Lim Jian, Weng Yiwei, Pham Quang-Cuong (2019-10)
3D Printing of Curved Concrete Surfaces Using Adaptable Membrane Formwork - Liu Haoran, Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2022-04)
Buildability Prediction of 3D Printed Concrete at Early-Ages:
A Numerical Study with Drucker-Prager-Model - Liu Ke, Takasu Koji, Jiang Jinming, Zu Kun et al. (2023-12)
Mechanical Properties of 3D Printed Concrete Components:
A Review - Liu Yi, Wang Li, Yuan Qiang, Peng Jianwei (2023-09)
Effect of Coarse Aggregate on Printability and Mechanical Properties of 3D Printed Concrete - Liu Dawei, Zhang Zhigang, Zhang Xiaoyue, Chen Zhaohui (2023-09)
3D Printing Concrete Structures:
State of the Art, Challenges, and Opportunities - Ma Guowei, Buswell Richard, Silva Wilson, Wang Li et al. (2022-03)
Technology Readiness:
A Global Snapshot of 3D Concrete Printing and the Frontiers for Development - Mogra Mihir, Asaf Ofer, Sprecher Aaron, Amir Oded (2023-08)
Design-Optimization of 3D Printed Concrete Elements Considering Buildability - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
Extrusion-Based Concrete 3D Printing from a Material Perspective:
A State of the Art Review - Mollah Md., Comminal Raphaël, Serdeczny Marcin, Šeta Berin et al. (2023-05)
Computational Analysis of Yield-Stress-Buildup and Stability of Deposited Layers in Material-Extrusion Additive Manufacturing - Mollah Md., Comminal Raphaël, Silva Wilson, Šeta Berin et al. (2023-07)
Computational Fluid Dynamics Modelling and Experimental Analysis of Reinforcement-Bar-Integration in 3D Concrete Printing - Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction - Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
A Review - Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
A Review of 3D Concrete Printing Systems and Materials Properties:
Current Status and Future Research Prospects - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Sun Bochao, Li Peichen, Wang Dianchao, Ye Jun et al. (2023-03)
Evaluation of Mechanical Properties and Anisotropy of 3D Printed Concrete at Different Temperatures - Vantyghem Gieljan, Corte Wouter, Shakour Emad, Amir Oded (2020-01)
3D Printing of a Post-Tensioned Concrete Girder Designed by Topology-Optimization - Wang Qing, Ren Xiaodan, Li Jie (2023-08)
Damage-Rheology Model for Predicting 3D Printed Concrete Buildability - Wang Li, Ye Kehan, Wan Qian, Li Zhijian et al. (2023-05)
Inclined 3D Concrete Printing:
Build-Up Prediction and Early-Age Performance-Optimization - Wu Yiwen, Liu Chao, Liu Huawei, Zhang Zhenzi et al. (2021-07)
Study on the Rheology and Buildability of 3D Printed Concrete with Recycled Coarse Aggregates - Xiao Jianzhuang, Hou Shaodan, Duan Zhenhua, Zou Shuai (2023-01)
Rheology of 3D Printable Concrete Prepared by Secondary Mixing of Ready-Mix Concrete - Yang Wenwei, Wang Li, Ma Guowei, Feng Peng (2023-06)
An Integrated Method of Topological-Optimization and Path-Design for 3D Concrete Printing - Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
A Review of the Current Progress and Application of 3D Printed Concrete - Zou Mengtong, Liu Chuanbei, Zhang Keying, Li Wuqian et al. (2023-11)
Evaluation and Control of Printability and Rheological Properties of 3D Printed Rubberized Concrete - Zou Shuai, Xiao Jianzhuang, Duan Zhenhua, Ding Tao et al. (2021-10)
On Rheology of Mortar with Recycled Fine Aggregate for 3D Printing
0 Citations
BibTeX
@article{lian_ding.2026.DoIC3P,
author = "Hongqian Lian and Tao Ding",
title = "Deformation of Inclined Concrete 3D Printing: A Computational Fluid Dynamics Analysis",
doi = "10.1016/j.cemconres.2025.108032",
year = "2026",
journal = "Cement and Concrete Research",
volume = "199",
pages = "108032",
}
Formatted Citation
H. Lian and T. Ding, “Deformation of Inclined Concrete 3D Printing: A Computational Fluid Dynamics Analysis”, Cement and Concrete Research, vol. 199, p. 108032, 2026, doi: 10.1016/j.cemconres.2025.108032.
Lian, Hongqian, and Tao Ding. “Deformation of Inclined Concrete 3D Printing: A Computational Fluid Dynamics Analysis”. Cement and Concrete Research 199 (2026): 108032. https://doi.org/10.1016/j.cemconres.2025.108032.