Tensile Performance of Interlayer Interface of Interlocking 3D Printed Concrete with Single Toothlike Nozzle (2025-03)¶
, Liu Yan, Zhang Zupan, Gao Pengxiang,
Journal Article - Journal of Building Engineering, No. 112287
Abstract
Interlocking 3D printed concrete printed by tooth-like nozzles exhibits superior interfacial tensile performance. However, the influences of geometric parameters on the interlayer tensile strength of interlocking specimens remains unclear, and there is an urgent need to establish formulas to quantify the influences. To address these issues, this study, based on a novel single-tooth nozzle designed to enhance interlayer performance, comprehensively considers macro-mechanical performance testing and micro-porosity analysis. It reveals the failure modes of interlayer interfacial tension in single-tooth interlocking 3D printed concrete and proposes the tensile strength calculation formulas. Firstly, the theoretical analysis of the interlayer interfacial tensile strength of 3D printed concrete was performed. Then, conducted uniaxial tensile tests and validation experiments, and confirmed the validity of the theoretical formulas. Finally, the stress-strain curves of interlayer interlocking specimens with different single-tooth angles were analyzed. The results indicate that: (1) The interlayer interfacial tensile strength of interlocking 3D printed concrete with single-tooth nozzle is higher than that with square nozzles. (2) The failure cracks of specimens with square nozzle propagated horizontally in a straight line, while those of single-tooth interlocking specimens exhibited a serrated pattern along the interlocking interface. (3) The interlayer interfacial tensile strength formulas can effectively estimate the interlayer interfacial tensile strength of single-tooth interlocking 3D printed concrete. These findings provide methods and empirical insights for subsequent theoretical analysis and the establishment of calculation formulas for the strength of interlocking 3D printed concrete.
¶
31 References
- Babafemi Adewumi, Kolawole John, Miah Md, Paul Suvash et al. (2021-06)
A Concise Review on Inter-Layer Bond Strength in 3D Concrete Printing - Bhooshan Shajay, Bhooshan Vishu, Dell’Endice Alessandro, Chu Jianfei et al. (2022-06)
The Striatus Bridge - Bong Shin, Nematollahi Behzad, Nazari Ali, Xia Ming et al. (2019-03)
Method of Optimization for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications - Bos Freek, Menna Costantino, Pradena Mauricio, Kreiger Eric et al. (2022-03)
The Realities of Additively Manufactured Concrete Structures in Practice - Cao Xiangpeng, Yu Shiheng, Zheng Dapeng, Cui Hongzhi (2022-06)
Nail-Planting to Enhance the Interface Bonding Strength in 3D Printed Concrete - Chen Yu, Jansen Koen, Zhang Hongzhi, Rodríguez Claudia et al. (2020-07)
Effect of Printing-Parameters on Inter-Layer Bond Strength of 3D Printed Limestone-Calcined-Clay-Based Cementitious Materials:
An Experimental and Numerical Study - Delgado Camacho Daniel, Clayton Patricia, Brien William, Seepersad Carolyn et al. (2018-02)
Applications of Additive Manufacturing in the Construction Industry:
A Forward-Looking Review - Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2023-05)
Microstructure and Mechanical Properties of Inter-Layer Regions in Extrusion-Based 3D Printed Concrete:
A Critical Review - He Lewei, Li Hua, Chow Wai, Zeng Biqing et al. (2022-09)
Increasing the Inter-Layer Strength of 3D Printed Concrete with Tooth-Like Interface:
An Experimental and Theoretical Investigation - Hosseini Ehsan, Zakertabrizi Mohammad, Korayem Asghar, Xu Guanzhong (2019-03)
A Novel Method to Enhance the Inter-Layer Bonding of 3D Printing Concrete:
An Experimental and Computational Investigation - Ji Guangchao, Xiao Jianzhuang, Zhi Peng, Wu Yuching et al. (2022-02)
Effects of Extrusion-Parameters on Properties of 3D Printing Concrete with Coarse Aggregates - Jia Zijian, Kong Lingyu, Jia Lutao, Ma Lei et al. (2024-04)
Printability and Mechanical Properties of 3D Printing Ultra-High-Performance Concrete Incorporating Limestone-Powder - Jiang Youbau, Gao Pengxiang, Adhikari Sondipon, Yao Xiaofei et al. (2024-12)
Studies on the Mechanical Properties of Inter-Layer Interlocking 3D Printed Concrete Based on a Novel Nozzle - Jiang Quan, Liu Qiang, Wu Si, Zheng Hong et al. (2022-06)
Modification Effect of Nano-Silica and Polypropylene-Fiber for Extrusion-Based 3D Printing Concrete:
Printability and Mechanical Anisotropy - Li Yu, Wu Hao, Xie Xinjie, Zhang Liming et al. (2024-02)
FloatArch:
A Cable-Supported, Unreinforced, and Re-Assemblable 3D Printed Concrete Structure Designed Using Multi-Material Topology-Optimization - Liu Zhenbang, Li Mingyang, Wong Teck, Tan Ming (2024-05)
Determine the Effects of Pore Properties on the Mechanical Performances of 3D Concrete Printing Units with Experimental and Numerical Methods - Liu Dawei, Zhang Zhigang, Zhang Xiaoyue, Chen Zhaohui (2023-09)
3D Printing Concrete Structures:
State of the Art, Challenges, and Opportunities - Ma Guowei, Buswell Richard, Silva Wilson, Wang Li et al. (2022-03)
Technology Readiness:
A Global Snapshot of 3D Concrete Printing and the Frontiers for Development - Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
Extrusion-Based Additive Manufacturing with Cement-Based Materials:
Production Steps, Processes, and Their Underlying Physics - Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2020-09)
Effect of Microwave-Heating on Inter-Layer Bonding and Buildability of Geopolymer 3D Concrete Printing - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
Steel-Fiber-Reinforced 3D Printed Concrete:
Influence of Fiber Sizes on Mechanical Performance - Putten Jolien, Deprez Maxim, Cnudde Veerle, Schutter Geert et al. (2019-09)
Microstructural Characterization of 3D Printed Cementitious Materials - Putten Jolien, Schutter Geert, Tittelboom Kim (2019-07)
Surface-Modification as a Technique to Improve Inter-Layer Bonding Strength in 3D Printed Cementitious Materials - Sakka Fatima, Assaad Joseph, Hamzeh Farook, Nakhoul Charbel (2019-07)
Thixotropy and Interfacial Bond Strengths of Polymer-Modified Printed Mortars - Salaimanimagudam M., Jayaprakash Jaganathan (2024-04)
Effect of Introducing Dummy Layers on Inter-Layer Bonding and Geometrical Deformations in Concrete 3D Printing - Tay Yi, Ting Guan, Qian Ye, Panda Biranchi et al. (2018-07)
Time-Gap-Effect on Bond Strength of 3D Printed Concrete - Wang Li, Liu Yi, Yang Yu, Li Yanfeng et al. (2021-04)
Bonding Performance of 3D Printing Concrete with Self-Locking Interfaces Exposed to Compression-Shear and Compression-Splitting Stresses - Weng Yiwei, Li Mingyang, Zhang Dong, Tan Ming et al. (2021-02)
Investigation of Inter-Layer Adhesion of 3D Printable Cementitious Material from the Aspect of Printing-Process - Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
Large-Scale 3D Printing Concrete Technology:
Current Status and Future Opportunities - Zareiyan Babak, Khoshnevis Behrokh (2017-08)
Effects of Interlocking on Inter-Layer Adhesion and Strength of Structures in 3D Printing of Concrete
6 Citations
- Raza Ali, Tan Binglin, Jiajia Zhou, Umar Muhammad et al. (2025-11)
Evaluation of Mechanical and Microstructural Properties of Sustainable 3D-Printed Engineered Cementitious Composites Incorporating Hybrid PE/PVA Fibers and Yellow River Sand - Chan Li-Jing, Padil Khairul, Chin Chee-Long, Ibrahim Izni et al. (2025-09)
Strategies to Enhance Interlayer Bonding in 3D Printed Concrete:
A Review - Jiang Youbau, Wen Jun, Gao Pengxiang, Liu Yan et al. (2025-09)
Effect of Graphene Oxide on Physical and Mechanical Properties of 3D Printed Concrete - Zhang Chao, Ren Juanjuan, Zhang Shihao, Guo Yipu et al. (2025-07)
Advanced Impact Resistance Design Through 3D-Printed Concrete Technology:
Unleashing the Potential of Additive Manufacturing for Protective Structures - Mostert Jean-Pierre, Kruger Jacques (2025-07)
Reducing Anisotropic Behaviour of 3D Printed Concrete Through Interlocked Filaments - Duan Yuhang, Wang Chuan, Yin Binbin, Liew Kim (2025-06)
Modeling Interfacial Failure in 3D-Printed Concrete via Peridynamics
BibTeX
@article{jian_liu_zhan_gao.2025.TPoIIoI3PCwSTN,
author = "Youbau Jiang and Yan Liu and Zupan Zhang and Pengxiang Gao and Hao Zhou",
title = "Tensile Performance of Interlayer Interface of Interlocking 3D Printed Concrete with Single Toothlike Nozzle",
doi = "10.1016/j.jobe.2025.112287",
year = "2025",
journal = "Journal of Building Engineering",
pages = "112287",
}
Formatted Citation
Y. Jiang, Y. Liu, Z. Zhang, P. Gao and H. Zhou, “Tensile Performance of Interlayer Interface of Interlocking 3D Printed Concrete with Single Toothlike Nozzle”, Journal of Building Engineering, p. 112287, 2025, doi: 10.1016/j.jobe.2025.112287.
Jiang, Youbau, Yan Liu, Zupan Zhang, Pengxiang Gao, and Hao Zhou. “Tensile Performance of Interlayer Interface of Interlocking 3D Printed Concrete with Single Toothlike Nozzle”. Journal of Building Engineering, 2025, 112287. https://doi.org/10.1016/j.jobe.2025.112287.