Skip to content

Sustainability and 3D Concrete Printing (2023-06)

Identifying a Need for a More Holistic Approach to Assessing Environmental Impacts

10.1007/s44223-023-00030-3

 Heywood Kate,  Nicholas Paul
Journal Article - Architectural Intelligence, Vol. 2, Iss. 1

Abstract

This paper aims to identify the current status of research in 3D concrete printing (3DCP), locate the sustainability considerations relevant to these trajectories, and to identify a gap in knowledge and future research challenge regarding the sustainability of 3DCP. To categorize the broad range of research topics within 3DCP, the paper introduces an assessment framework that subdivides this field into three sub-fields: material science, computational design, and structure and performance. Common sustainability considerations are identified for each of these sub-fields. As a result of this analysis, a lack of critical assessments on claims about the sustainability and environmental impacts of 3DCP is identified. Our survey of literature, and its analysis via this framework, finds that whilst certain sustainability aspects are highlighted, other measures and considerations are skimmed over, or omitted. It is found that whilst material optimization and the ability to create formwork-free, complex forms is noted as a main argument for the implementation of 3DCP, this claim is largely unsupported by reference or reported outcomes, and the environmental impacts are often only briefly discussed. There is a clear need for a holistic view on the sustainability issues which surround 3DCP. This paper further highlights the lack of comprehensive assessment tools and metrics for measuring the environmental impact of 3DCP and concludes that further research must be done to develop these tools, to allow architects to integrate 3DCP into sustainability-oriented design workflows. Our paper concludes that the development of these tools will lead to a more comprehensive understanding on the environmental sustainability of 3DCP, allowing research resources to be focused within each field to ensure 3DCP continues to develop in a sustainable way.

49 References

  1. Abdalla Hadeer, Fattah Kazi, Abdallah Mohamed, Tamimi Adil (2021-10)
    Environmental Footprint and Economics of a Full-Scale 3D Printed House
  2. Adaloudis Max, Bonnin Roca Jaime (2021-05)
    Sustainability Tradeoffs in the Adoption of 3D Concrete Printing in the Construction Industry
  3. Agustí-Juan Isolda, Habert Guillaume (2016-04)
    An Environmental Perspective on Digital Fabrication in Architecture and Construction
  4. Agustí-Juan Isolda, Habert Guillaume (2016-11)
    Environmental Design Guidelines for Digital Fabrication
  5. Agustí-Juan Isolda, Müller Florian, Hack Norman, Wangler Timothy et al. (2017-04)
    Potential Benefits of Digital Fabrication for Complex Structures:
    Environmental Assessment of a Robotically Fabricated Concrete Wall
  6. Alhumayani Hashem, Gomaa Mohamed, Soebarto Veronica, Jabi Wassim (2020-06)
    Environmental Assessment of Large-Scale 3D Printing in Construction:
    A Comparative Study between Cob and Concrete
  7. Anton Ana-Maria, Reiter Lex, Wangler Timothy, Frangez Valens et al. (2020-12)
    A 3D Concrete Printing Prefabrication Platform for Bespoke Columns
  8. Anton Ana-Maria, Yoo Angela, Bedarf Patrick, Reiter Lex et al. (2019-10)
    Vertical Modulations
  9. Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
    Sustainable Materials for 3D Concrete Printing
  10. Bhooshan Shajay, Bhooshan Vishu, Dell’Endice Alessandro, Chu Jianfei et al. (2022-06)
    The Striatus Bridge
  11. Breseghello Luca, Naboni Roberto (2021-07)
    Adaptive Tool-Path:
    Enhanced Design and Process-Control for Robotic 3DCP
  12. Breseghello Luca, Sanin Sandro, Naboni Roberto (2021-04)
    Tool-Path Simulation, Design and Manipulation in Robotic 3D Concrete Printing
  13. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  14. Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
    A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing
  15. Christen Heidi, Zijl Gideon, Villiers Wibke (2022-05)
    The Incorporation of Recycled Brick-Aggregate in 3D Printed Concrete
  16. Flatt Robert, Wangler Timothy (2022-05)
    On Sustainability and Digital Fabrication with Concrete
  17. Gaudillière-Jami Nadja, Duballet Romain, Bouyssou Charles, Mallet Alban et al. (2018-09)
    Large-Scale Additive Manufacturing of Ultra-High-Performance Concrete of Integrated Formwork for Truss-Shaped Pillars
  18. Gebhard Lukas, Mata-Falcón Jaime, Anton Ana-Maria, Burger Joris et al. (2020-07)
    Aligned Inter-Layer Fiber-Reinforcement and Post-Tensioning as a Reinforcement-Strategy for Digital Fabrication
  19. Gislason Styrmir, Bruhn Simon, Breseghello Luca, Sen Burak et al. (2022-06)
    Porous 3D Printed Concrete Beams Show an Environmental Promise:
    A Cradle-to-Grave Comparative Life Cycle Assessment
  20. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  21. Ji Guangchao, Ding Tao, Xiao Jianzhuang, Du Shupeng et al. (2019-05)
    A 3D Printed Ready-Mixed Concrete Power-Distribution Substation:
    Materials and Construction Technology
  22. Jipa Mihail-Andrei, Calvo Barentin Cristian, Lydon Gearóid, Rippmann Matthias et al. (2019-10)
    3D Printed Formwork for Integrated Funicular Concrete Slabs
  23. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  24. Kloft Harald, Empelmann Martin, Hack Norman, Herrmann Eric et al. (2020-09)
    Reinforcement-Strategies for 3D Concrete Printing
  25. Kuzmenko Kateryna, Ducoulombier Nicolas, Féraille Adélaïde, Roussel Nicolas (2022-05)
    Environmental Impact of Extrusion-Based Additive Manufacturing:
    Generic Model, Power-Measurements and Influence of Printing-Resolution
  26. Kuzmenko Kateryna, Gaudillière-Jami Nadja, Féraille Adélaïde, Dirrenberger Justin et al. (2020-09)
    Assessing the Environmental Viability of 3D Concrete Printing Technology
  27. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  28. Lim Sungwoo, Buswell Richard, Le Thanh, Wackrow Rene et al. (2011-07)
    Development of a Viable Concrete Printing Process
  29. Lin Alexander, Goel Abhimanyu, Wong De, Yeo Charlene et al. (2022-07)
    Compressive Load-Dominated Concrete Structures for Customized 3D Printing Fabrication
  30. Lloret-Fritschi Ena, Shahab Amir, Linus Mettler, Flatt Robert et al. (2014-03)
    Complex Concrete Structures:
    Merging Existing Casting Techniques with Digital Fabrication
  31. Long Wujian, Lin Can, Tao Jie-Lin, Ye Taohua et al. (2021-02)
    Printability and Particle-Packing of 3D Printable Limestone-Calcined-Clay-Cement Composites
  32. Ma Guowei, Buswell Richard, Silva Wilson, Wang Li et al. (2022-03)
    Technology Readiness:
    A Global Snapshot of 3D Concrete Printing and the Frontiers for Development
  33. Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
    Large-Scale Digital Concrete Construction:
    CONPrint3D Concept for On-Site, Monolithic 3D Printing
  34. Mohammad Malek, Masad Eyad, Ghamdi Sami (2020-12)
    3D Concrete Printing Sustainability:
    A Comparative Life Cycle Assessment of Four Construction Method Scenarios
  35. Mousavi Seyed, Dehestani Mehdi (2022-08)
    Influence of Latex and Vinyl Disposable Gloves as Recycled Fibers in 3D Printing Sustainable Mortars
  36. Nematollahi Behzad, Xia Ming, Sanjayan Jay (2017-07)
    Current Progress of 3D Concrete Printing Technologies
  37. Perrot Arnaud, Pierre Alexandre, Nerella Venkatesh, Wolfs Robert et al. (2021-07)
    From Analytical Methods to Numerical Simulations:
    A Process Engineering Toolbox for 3D Concrete Printing
  38. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  39. Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
    3D Printable Concrete with Natural and Recycled Coarse Aggregates:
    Rheological, Mechanical and Shrinkage Behavior
  40. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  41. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  42. Teixeira João, Schaefer Cecília, Rangel Bárbara, Alves Jorge et al. (2021-03)
    Development of 3D Printing Sustainable Mortars Based on a Bibliometric Analysis
  43. Tinoco Matheus, Mendonça Érica, Fernandez Letízia, Caldas Lucas et al. (2022-04)
    Life Cycle Assessment and Environmental Sustainability of Cementitious Materials for 3D Concrete Printing:
    A Systematic Literature Review
  44. Vantyghem Gieljan, Ooms Ticho, Corte Wouter (2020-11)
    VoxelPrint:
    A Grasshopper Plug-In for Voxel-Based Numerical Simulation of Concrete Printing
  45. Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
    Digital Concrete:
    Opportunities and Challenges
  46. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  47. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  48. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  49. Yao Yue, Hu Mingming, Maio Francesco, Cucurachi Stefano (2019-08)
    Life Cycle Assessment of 3D Printing Geopolymer Concrete:
    An Ex‐Ante Study

17 Citations

  1. Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Inqiad Waleed et al. (2025-12)
    Exploring Knowledge Domains and Future Research Directions in 3D Printed Concrete:
    A Bibliometric and Systematic Review
  2. Mesoudy Mouad, Foulki Rida, Amegouz Driss (2025-10)
    3D Concrete Printing:
    Optimizing the Design of Interlocking 3D Printed Concrete Blocks for Fast and Sustainable Construction
  3. Jamjala Siva, Thulasirangan Lakshmidevi Manivannan, Reddy K., Kafle Bidur et al. (2025-10)
    A Critical Review on Synergistic Integration of Nanomaterials in 3D-Printed Concrete:
    Rheology to Microstructure and Eco-Functionality
  4. Akgümüş Fatih, Şahin Hatice, Mardani Ali (2025-10)
    Investigation of Waste Steel Fiber Usage Rate and Length Change on Some Fresh State Properties of 3D Printable Concrete Mixtures
  5. Ribeiro João, Campos Tatiana, Brandão Filipe, Figueiredo Bruno et al. (2025-06)
    3DCP Composite Systems:
    Additive Manufacturing of a Concrete and Cellulose Interlocking Wall
  6. Mohamed Osama, Mishra Anamika, Isam Fida (2025-05)
    An Overview of 3D Printed Concrete for Building Structures:
    Material Properties, Sustainability, Future Opportunities, and Challenges
  7. Zhou Jimmy, Samarasinghe Don, Rotimi James, Feng Zhenan (2025-04)
    Examining Global Policy Influences on the Adoption of 3D Concrete Printing Technology:
    A Roadmap for New Zealand
  8. Hassan Amer, Alomayri Thamer, Noaman Mohammed, Zhang Chunwei (2025-01)
    3D Printed Concrete for Sustainable Construction:
    A Review of Mechanical Properties and Environmental Impact
  9. Thomsen Mette, Tamke Martin, Rossi Gabriella, Chiujdea Ruxandra-Stefania et al. (2024-11)
    Sustainable Construction:
    Additive Manufacturing in a Circular Design Framework
  10. Asaf Ofer, Bentur Arnon, Amir Oded, Larianovsky Pavel et al. (2024-09)
    A 3D Printing Platform for Design and Manufacturing of Multi-Functional Cementitious Construction Components and Its Validation for a Post-Tensioned Beam
  11. Hage Ali, Paquet Elodie, Leklou Ali, Neu Thibault et al. (2024-09)
    Navigating the Digital Chain in Concrete 3D Printing
  12. Heywood Kate, Nicholas Paul (2024-09)
    Design for and with 3DCP:
    An Integrated Early Design Stage Workflow
  13. Shoaei Parham, Gallantree-Smith Harrison, Martínez Pacheco Victor, Pamies Ramón et al. (2024-06)
    Comparative Analysis of 3D Printing of Portland Cement Mortars with Hydroxypropyl-Methylcellulose and Micro-Fibrillated Cellulose as Viscosity-Modifying-Agents
  14. Zhuang Zicheng, Xu Fengming, Ye Junhong, Hu Nan et al. (2024-06)
    A Comprehensive Review of Sustainable Materials and Tool-Path-Optimization in 3D Concrete Printing
  15. Khan Mehran, McNally Ciaran (2024-05)
    Recent Developments on Low-Carbon 3D Printing Concrete:
    Revolutionizing Construction Through Innovative Technology
  16. Heywood Kate, Nicholas Paul (2024-04)
    3D Concrete Printing in a Circular Economy:
    What We Can Learn from a 3DCP Slab Designed for Dissassembly
  17. Hassan Habibelrahman, Rodriguez-Ubinas Edwin, Tamimi Adil, Trepci Esra et al. (2024-04)
    Towards Innovative and Sustainable Buildings:
    A Comprehensive Review of 3D Printing in Construction

BibTeX
@article{heyw_nich.2023.Sa3CP,
  author            = "Kate Heywood and Paul Nicholas",
  title             = "Sustainability and 3D Concrete Printing: Identifying a Need for a More Holistic Approach to Assessing Environmental Impacts",
  doi               = "10.1007/s44223-023-00030-3",
  year              = "2023",
  journal           = "Architectural Intelligence",
  volume            = "2",
  number            = "1",
}
Formatted Citation

K. Heywood and P. Nicholas, “Sustainability and 3D Concrete Printing: Identifying a Need for a More Holistic Approach to Assessing Environmental Impacts”, Architectural Intelligence, vol. 2, no. 1, 2023, doi: 10.1007/s44223-023-00030-3.

Heywood, Kate, and Paul Nicholas. “Sustainability and 3D Concrete Printing: Identifying a Need for a More Holistic Approach to Assessing Environmental Impacts”. Architectural Intelligence 2, no. 1 (2023). https://doi.org/10.1007/s44223-023-00030-3.