Skip to content

Use of Nano-Clays and Methylcellulose to Tailor Rheology for Three-Dimensional Concrete Printing (2021-11)

10.14359/51733129

 Douba AlaEddin,  Kawashima Shiho
Journal Article - ACI Materials Journal, Vol. 118, Iss. 6, pp. 275-289

Abstract

A concrete system is identified as highly printable if it can offer minimal resistance to handling while sustaining high load resistance and structural stability. One of the major complexities of three-dimensional (3D) concrete printing lies in its sensitivity to materials and equipment that varies the time among layers, hydration time, and shear history. While nanoclays are effective additives for enhancing structural buildup, methylcellulose is introduced as a secondary additive to significantly amplify the nanoclays’ effect on the static yield stress while prolonging the open time between layers and increasing filament cohesiveness. The compatibility of these two systems at different contents is studied by characterizing rheological properties such as static yield stress, steady-state viscosity, and storage modulus, as well as the heat of hydration through isothermal calorimetry. The hybrid system is found to increase the static yield stress by up to 900% compared to the reference paste at only 3.0 wt.% total content by mass.

31 References

  1. Bentz Dale, Jones Scott, Bentz Isaiah, Peltz Max (2018-06)
    Towards the Formulation of Robust and Sustainable Cementitious Binders for 3D Additive Construction by Extrusion
  2. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  3. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  4. Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
    Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture
  5. Chen Mingxu, Li Laibo, Wang Jiaao, Huang Yongbo et al. (2019-10)
    Rheological Parameters and Building Time of 3D Printing Sulphoaluminate-Cement-Paste Modified by Retarder and Diatomite
  6. Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
    Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite
  7. Ivanova Irina, Mechtcherine Viktor (2020-03)
    Effects of Volume Fraction and Surface Area of Aggregates on the Static Yield-Stress and Structural Build-Up of Fresh Concrete
  8. Jo Jun, Jo Byung, Cho Woohyun, Kim Jung-Hoon (2020-03)
    Development of a 3D Printer for Concrete Structures:
    Laboratory Testing of Cementitious Materials
  9. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  10. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  11. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  12. Mai (née Dressler) Inka, Freund Niklas, Lowke Dirk (2020-01)
    The Effect of Accelerator Dosage on Fresh Concrete Properties and on Inter-Layer Strength in Shotcrete 3D Printing
  13. Mendoza Reales Oscar, Duda Pedro, Silva Emílio, Paiva Maria et al. (2019-06)
    Nanosilica-Particles as Structural Buildup Agents for 3D Printing with Portland Cement-Pastes
  14. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  15. Nerella Venkatesh, Krause Martin, Mechtcherine Viktor (2019-11)
    Direct Printing-Test for Buildability of 3D Printable Concrete Considering Economic Viability
  16. Panda Biranchi, Lim Jian, Tan Ming (2019-02)
    Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction
  17. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2020-01)
    Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nano-Clay and Nucleation-Seeds for 3D Printing
  18. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  19. Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
    Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing
  20. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  21. Qian Ye, Kawashima Shiho (2016-09)
    Use of Creep Recovery Protocol to Measure Static Yield-Stress and Structural Rebuilding of Fresh Cement-Pastes
  22. Qian Ye, Schutter Geert (2018-06)
    Enhancing Thixotropy of Fresh Cement-Pastes with Nano-Clay in Presence of Polycarboxylate-Ether Superplasticizer (PCE)
  23. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  24. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  25. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  26. Tay Yi, Ting Guan, Qian Ye, Panda Biranchi et al. (2018-07)
    Time-Gap-Effect on Bond Strength of 3D Printed Concrete
  27. Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
    Digital Concrete:
    Opportunities and Challenges
  28. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  29. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  30. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink
  31. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete

16 Citations

  1. Márquez Álvaro, Varela Hugo, Barluenga Gonzalo (2025-09)
    Influence of Rheology Modifying Admixtures on the Buildability of 3D Printing Cement-Based Mortars
  2. Yassin Ahmed, Hafez Mohamed, Aboelhassan Mohamed (2025-04)
    Experimental and Numerical Investigation on the Effect of Different Types of Synthetic Fibers on the Flexure Behavior and Mechanical Properties of 3D Cementitious Composite Printing Provided with Cement CEM II/A-P
  3. Zafar Muhammad, Shahid Adnan, Sedghi Reza, Hojati Maryam (2025-03)
    Optimization of Biopolymer Additives for 3D Printable Cementitious Systems:
    A Design of Experiment Approach
  4. Márquez Álvaro, Varela Hugo, Barluenga Gonzalo (2024-12)
    Rheology and Early-Age Evaluation of 3D Printable Cement-Limestone-Filler-Pastes with Nano-Clays and Methylcellulose
  5. Althoey Fadi, Zaid Osama, Ahmed Bilal, Elhadi Khaled (2024-10)
    Impact of Double Hooked Steel-Fibers and Nano-Kaolin-Clay on Fresh Properties of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete
  6. Sadeghzadeh Benam Shaghayegh, Sandalci Ilgin, Bundur Zeynep, Bebek Özkan (2024-09)
    Bio-Based Additives to Improve the Rheology of High-Volume Fly-Ash Cement-Based Mortar for 3D Printing
  7. Sahana C., Soda Prabhath, Dwivedi Ashutosh, Kumar Sandeep et al. (2024-07)
    3D Printing with Stabilized Earth:
    Material-Development and Effect of Carbon-Sequestration on Engineering-Performance
  8. Kilic Ugur, Soliman Nancy, Omran Ahmed, Ozbulut Osman (2024-06)
    Effects of Cellulose Nanofibrils on Rheological and Mechanical Properties of 3D Printable Cement Composites
  9. Rahman Mahfuzur, Rawat Sanket, Yang Chunhui, Mahil Ahmed et al. (2024-05)
    A Comprehensive Review on Fresh and Rheological Properties of 3D Printable Cementitious Composites
  10. Soda Prabhath, Dwivedi Ashutosh, Sahana C., Gupta Souradeep (2024-03)
    Development of 3D Printable Stabilized Earth-Based Construction Materials Using Excavated Soil:
    Evaluation of Fresh and Hardened Properties
  11. Zafar Muhammad, Bakhshi Amir, Hojati Maryam (2023-10)
    Printability and Shape Fidelity Evaluation of Self-Reinforced Engineered Cementitious Composites
  12. Varela Hugo, Barluenga Gonzalo, Perrot Arnaud (2023-07)
    Extrusion and Structural Build-Up of 3D Printing Cement-Pastes with Fly-Ash, Nano-Clay and VMAs
  13. Zhang Nan, Sanjayan Jay (2023-07)
    Mechanisms of Rheological Modifiers for Quick Mixing Method in 3D Concrete Printing
  14. Arunothayan Arun, Nematollahi Behzad, Khayat Kamal, Ramesh Akilesh et al. (2022-11)
    Rheological Characterization of Ultra-High-Performance Concrete for 3D Printing
  15. Douba AlaEddin, Badjatya Palash, Kawashima Shiho (2022-06)
    Influence of Infill-Pattern on Reactive MgO Printed Structures
  16. Douba AlaEddin, Badjatya Palash, Kawashima Shiho (2022-03)
    Enhancing Carbonation and Strength of MgO Cement Through 3D Printing

BibTeX
@article{doub_kawa.2021.UoNCaMtTRfTDCP,
  author            = "AlaEddin Douba and Shiho Kawashima",
  title             = "Use of Nano-Clays and Methylcellulose to Tailor Rheology for Three-Dimensional Concrete Printing",
  doi               = "10.14359/51733129",
  year              = "2021",
  journal           = "ACI Materials Journal",
  volume            = "118",
  number            = "6",
  pages             = "275--289",
}
Formatted Citation

A. Douba and S. Kawashima, “Use of Nano-Clays and Methylcellulose to Tailor Rheology for Three-Dimensional Concrete Printing”, ACI Materials Journal, vol. 118, no. 6, pp. 275–289, 2021, doi: 10.14359/51733129.

Douba, AlaEddin, and Shiho Kawashima. “Use of Nano-Clays and Methylcellulose to Tailor Rheology for Three-Dimensional Concrete Printing”. ACI Materials Journal 118, no. 6 (2021): 275–89. https://doi.org/10.14359/51733129.