Skip to content

Motion-Planning and Numerical Simulation of Material-Deposition at Corners in Extrusion Additive Manufacturing (2019-06)

10.1016/j.addma.2019.06.005

 Comminal Raphaël,  Serdeczny Marcin,  Pedersen David,  Spangenberg Jon
Journal Article - Additive Manufacturing, Vol. 29

Abstract

The material deposition along a toolpath with a sharp corner is simulated with a computational fluid dynamics model. We investigate the effects of smoothing the toolpath and material over-extrusion on the corner rounding and the corner swelling, for 90° and 30° turns. The toolpath motion is controlled with trapezoidal velocity profiles constrained by a maximal acceleration. The toolpath smoothing of the corner is parametrized by a blending acceleration factor. Analytical solutions for the deviation of the smoothed toolpath from the trajectory of the sharp corner, as well as the additional printing time required by the deceleration and acceleration phases in the vicinity of the turn are provided. Moreover, several scenarios with different blending acceleration factors are simulated, for the cases of a constant extrusion rate and an extrusion rate proportional to the printing head speed. The constant extrusion rate causes material over-extrusion during the deceleration and acceleration phases of the printing head. However, the toolpath smoothing reduces the corner swelling. The amount of underfill and overfill at the inside and outside of the corner are quantified, as compared to an ideal case where the printing head would instantaneously change its speed direction at the corner. The numerical results show that there is an optimal amount of toolpath smoothing where the over-extrusion compensates for the corner rounding; hence improving the quality of the corner. A uniform road width is obtained with the proportional extrusion rate.

1 References

  1. Serdeczny Marcin, Comminal Raphaël, Pedersen David, Spangenberg Jon (2019-05)
    Numerical Simulations of the Mesostructure Formation in Material-Extrusion Additive Manufacturing

39 Citations

  1. Xia Kailun, Chen Yuning, Jia Lutao, Quan Shitao et al. (2025-10)
    The Impact of Internal Stress Generated During the Printing Process on the Early-Age Properties of 3D Printed Concrete
  2. Kim Tae, Oh Sangwoo, Lee Jinsuk, Choi Seongcheol et al. (2025-10)
    Experimental Data-Driven Framework for Quality Control of 3D-Printed Concrete Permanent Formworks
  3. Yamakawa Soji, Vazquez-Santiago Kyshalee, Xia Yixuan, Ogura Hiroki et al. (2025-09)
    Concrete Spray 3D Printing Simulator for Nozzle Trajectory Planning
  4. Liu Zhixin, Si Liang, Liu Yebao, Li Mingyang et al. (2025-08)
    Optimization of Printing Parameters Based on Computational Fluid Dynamics for Uniform Filament Mass Distribution at Corners in 3D Cementitious Material Printing
  5. Wagner Gabriel, Silva João, Ribeiro João, Figueiredo Bruno et al. (2025-08)
    A Novel and Flexible Approach to Modeling the Additive Manufacturing Extrusion of Cementitious Materials
  6. Chen Qinbin, Barbat Gabriel, Cervera Miguel (2025-06)
    Finite Element Buildability Analysis of 3D Printed Concrete Including Failure by Elastic Buckling and Plastic Flow
  7. An Dong, Rahman Mahfuzur, Zhang Y., Yang Chunhui (2025-05)
    Effects of Key 3D Concrete Printing Process Parameters on Layer Shape:
    Experimental Study and Smooth Particle Hydrodynamics Modelling
  8. Do Duc, Diab Zeinab, Rémond Sébastien, Hoxha Dashnor (2025-01)
    Numerical Simulation-Tools for 3D Printing
  9. Wolfs Robert (2024-09)
    The Status Quo of 3D Concrete Printing:
    Are We There Yet?
  10. Wolfs Robert, Bos Derk, Caron Jean-François, Gerke Markus et al. (2024-08)
    On-Line and In-Line Quality-Assessment Across All Scale Levels of 3D Concrete Printing
  11. Duarte Gonçalo, Brown Nathan, Duarte José (2024-07)
    Workflow for Generating, Simulating, and Optimizing Form and Tool-Path in 3D Concrete Printing of Vaults
  12. Duarte Gonçalo, Duarte José, Brown Nathan, Memari Ali et al. (2024-06)
    Design for Early-Age Structural Performance of 3D Printed Concrete Structures:
    A Parametric Numerical Modeling Approach
  13. Wei Ying, Han Song, Yu Shiwei, Chen Ziwei et al. (2024-05)
    Parameter Impact on 3D Concrete Printing from Single to Multi-Layer Stacking
  14. Wei Ying, Han Song, Chen Ziwei, Lu Jianxian et al. (2024-04)
    Numerical Simulation of 3D Concrete Printing Derived from Printer Head and Printing Process
  15. Nóbrega Anna, Queiroz Junior Cleanto, Souza Wendell, Cabral Kleber et al. (2024-02)
    Computational Modeling for Structural Element Analysis Using Cement Composites in 3D Printing
  16. Fasihi Ali, Libre Nicolas (2024-01)
    From Pumping to Deposition:
    A Comprehensive Review of Test-Methods for Characterizing Concrete-Printability
  17. Yu Hao, Zhang Weiwei, Yin Binbin, Sun Weikang et al. (2024-01)
    Modeling Extrusion-Process and Layer-Deformation in 3D Concrete Printing via Smoothed Particle-Hydrodynamics
  18. Yang Yan, Wu Hangzi, Han Lifang, Huang Qingling et al. (2023-12)
    Investigation on Geometric and Surface Finish Quality of 3D Concrete Printed Walls with Hollow Section
  19. Chang Ze, Chen Yu, Schlangen Erik, Šavija Branko (2023-09)
    A Review of Methods on Buildability Quantification of Extrusion-Based 3D Concrete Printing:
    From Analytical Modelling to Numerical Simulation
  20. Yang Xinrui, Lakhal Othman, Belarouci Abdelkader, Merzouki Rochdi (2023-09)
    Automatic Detection and Isolation of Filament-Width-Deviation During 3D Printing of Recycled Construction-Material
  21. Geffrault Anatole, Bessaies-Bey Hela, Roussel Nicolas, Coussot Philippe (2023-08)
    Printing by Yield-Stress Fluid-Shaping
  22. Abbaoui Khalid, Korachi Issam, Mollah Md., Spangenberg Jon (2023-06)
    Numerical Modelling of Planned Corner-Deposition in 3D Concrete Printing
  23. Mollah Md., Comminal Raphaël, Serdeczny Marcin, Šeta Berin et al. (2023-05)
    Computational Analysis of Yield-Stress-Buildup and Stability of Deposited Layers in Material-Extrusion Additive Manufacturing
  24. Salam Mohammad Abdul, Biernacki Joseph (2023-04)
    2D Stationary Computational Printing of Cement-Based Pastes with Time-Dependent Rheology
  25. Li Mingyang, Liu Zhixin, Ho Jin, Wong Teck (2023-03)
    Improving Homogeneity of 3D Printed Cementitious Material-Distribution for Radial Tool-Path
  26. Nguyen Vuong, Li Shuai, Liu Junli, Nguyen Kien et al. (2022-11)
    Modelling of 3D Concrete Printing Process:
    A Perspective on Material and Structural Simulations
  27. Abbaoui Khalid, Korachi Issam, Mollah Md., Spangenberg Jon (2022-11)
    CFD Modelling of Mortar-Extrusion and Path-Planning-Strategy at the Corner for 3D Concrete Printing
  28. Khan Shoukat, Koç Muammer (2022-10)
    Numerical Modelling and Simulation for Extrusion-Based 3D Concrete Printing:
    The Underlying Physics, Potential, and Challenges
  29. Barjuei Erfan, Courteille Eric, Rangeard Damien, Marie F. et al. (2022-07)
    Real-Time Vision-Based Control of Industrial Manipulators for Layer-Width Setting in Concrete 3D Printing Applications
  30. Pan Tinghong, Guo Rongxin, Jiang Yaqing, Ji Xuping (2022-07)
    How Do the Contact Surface Forces Affect the Inter-Layer Bond Strength of 3D Printed Mortar?
  31. Carneau Paul, Mesnil Romain, Baverel Olivier, Roussel Nicolas (2022-03)
    Layer Pressing in Concrete Extrusion-Based 3D Printing:
    Experiments and Analysis
  32. Mollah Md., Comminal Raphaël, Serdeczny Marcin, Pedersen David et al. (2022-01)
    Numerical Predictions of Bottom-Layer-Stability in Material-Extrusion Additive Manufacturing
  33. Liu Xuanting, Sun Bohua (2021-11)
    The Influence of Interface on the Structural Stability in 3D Concrete Printing Processes
  34. Wolfs Robert, Salet Theo, Roussel Nicolas (2021-10)
    Filament-Geometry-Control in Extrusion-Based Additive Manufacturing of Concrete:
    The Good, the Bad and the Ugly
  35. Perrot Arnaud, Pierre Alexandre, Nerella Venkatesh, Wolfs Robert et al. (2021-07)
    From Analytical Methods to Numerical Simulations:
    A Process Engineering Toolbox for 3D Concrete Printing
  36. Comminal Raphaël, Silva Wilson, Andersen Thomas, Stang Henrik et al. (2020-10)
    Modelling of 3D Concrete Printing Based on Computational Fluid Dynamics
  37. Comminal Raphaël, Silva Wilson, Andersen Thomas, Stang Henrik et al. (2020-07)
    Influence of Processing Parameters on the Layer Geometry in 3D Concrete Printing:
    Experiments and Modelling
  38. Roussel Nicolas, Spangenberg Jon, Wallevik Jon, Wolfs Robert (2020-06)
    Numerical Simulations of Concrete Processing:
    From Standard Formative Casting to Additive Manufacturing
  39. Liu Zhixin, Li Mingyang, Tay Yi, Weng Yiwei et al. (2020-04)
    Rotation-Nozzle and Numerical Simulation of Mass-Distribution at Corners in 3D Cementitious Material-Printing

BibTeX
@article{comm_serd_pede_span.2019.MPaNSoMDaCiEAM,
  author            = "Raphaël Comminal and Marcin P. Serdeczny and David Bue Pedersen and Jon Spangenberg",
  title             = "Motion-Planning and Numerical Simulation of Material-Deposition at Corners in Extrusion Additive Manufacturing",
  doi               = "10.1016/j.addma.2019.06.005",
  year              = "2019",
  journal           = "Additive Manufacturing",
  volume            = "29",
}
Formatted Citation

R. Comminal, M. P. Serdeczny, D. B. Pedersen and J. Spangenberg, “Motion-Planning and Numerical Simulation of Material-Deposition at Corners in Extrusion Additive Manufacturing”, Additive Manufacturing, vol. 29, 2019, doi: 10.1016/j.addma.2019.06.005.

Comminal, Raphaël, Marcin P. Serdeczny, David Bue Pedersen, and Jon Spangenberg. “Motion-Planning and Numerical Simulation of Material-Deposition at Corners in Extrusion Additive Manufacturing”. Additive Manufacturing 29 (2019). https://doi.org/10.1016/j.addma.2019.06.005.