Skip to content

Rheological, Mechanical, and Environmental Performance of Printable Graphene-Enhanced Cementitious Composites with Limestone and Calcined Clay (2024-09)

10.1016/j.jobe.2024.110673

 Baytak Tugba,  Gdeh Tawfeeq, Jiang Zhangfan,  Arce Gabriel, Colosi Lisa,  Ozbulut Osman
Journal Article - Journal of Building Engineering, Vol. 97, No. 110673

Abstract

As extrusion-based 3D concrete printing gains wider acceptance in construction, there is a growing imperative to incorporate supplementary cementitious materials (SCMs) into printable mixtures to address their high cement content and promote sustainability. Conventional SCMs like fly ash and slag are becoming increasingly scarce, underscoring the need for alternative solutions such as limestone and calcined clay. Additionally, the utilization of nanomaterials in printable mixtures holds potential for enhancing the mechanical properties of 3D printed structures. These properties are often compromised by interlayer interfaces and void formations during printing, resulting in lower mechanical performance compared to conventionally cast concrete. Graphene nanoplatelets (GNPs), with their high aspect ratios and exceptional mechanical characteristics, offer promising avenues for reinforcing printable cementitious composites. This study explores the rheological, mechanical, and environmental aspects of graphene-enhanced cementitious composites incorporating limestone and calcined clay. Graphene nanoplatelets (GNPs) were dispersed utilizing a surfactant-assisted sonication technique, and their dispersion characteristics were evaluated through absorbance, particle size, and zeta potential measurements. Then, the influence of varying GNP concentrations on the rheological properties of limestone-calcined clay (LC2) cementitious composites was assessed. Compressive and flexural strength tests were conducted on 3D-printed LC2 samples with different GNP ratios, alongside cast specimens for comparison. Microstructural examination of failed specimens was performed using scanning electron microscopy. Furthermore, a life cycle assessment was conducted to compare the environmental impacts of printable LC2 mixtures to conventional printable mixtures. Incorporating GNPs at a ratio of 0.05 % by weight of cement in printable LC2 mixtures enhances compressive strength by 23 %, leading to a reduction of approximately 31 % in environmental impacts compared to conventional printed mixtures.

35 References

  1. Alchaar Aktham, Tamimi Adil (2020-10)
    Mechanical Properties of 3D Printed Concrete in Hot Temperatures
  2. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  3. Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
    3D Printing of Reinforced Concrete Elements:
    Technology and Design Approach
  4. Bai Meiyan, Wu Yuching, Xiao Jianzhuang, Ding Tao et al. (2023-04)
    Workability and Hardened Properties of 3D Printed Engineered Cementitious Composites Incorporating Recycled Sand and PE-Fibers
  5. Basha Shaik, Rehman Atta, Aziz Md, Kim Jung-Hoon (2023-02)
    Cement Composites with Carbon-Based Nanomaterials for 3D Concrete Printing Applications:
    A Review
  6. Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
    Sustainable Materials for 3D Concrete Printing
  7. Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2023-03)
    Developing 3D Printable and Buildable Limestone-Calcined-Clay-Based Cement Composites with Higher Aggregate Content
  8. Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
    Rheology and Printability of Portland-Cement-Based Materials:
    A Review
  9. Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
    Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture
  10. Chen Yu, He Shan, Zhang Yu, Wan Zhi et al. (2021-08)
    3D Printing of Calcined-Clay-Limestone-Based Cementitious Materials
  11. Federowicz Karol, Kaszyńska Maria, Zieliński Adam, Hoffmann Marcin (2020-06)
    Effect of Curing Methods on Shrinkage Development in 3D Printed Concrete
  12. Jia Zijian, Kong Lingyu, Jia Lutao, Ma Lei et al. (2024-04)
    Printability and Mechanical Properties of 3D Printing Ultra-High-Performance Concrete Incorporating Limestone-Powder
  13. Joh Changbin, Lee Jungwoo, Bui The, Park Jihun et al. (2020-11)
    Buildability and Mechanical Properties of 3D Printed Concrete
  14. Kilic Ugur, Ma Ji, Baharlou Ehsan, Ozbulut Osman (2023-03)
    Effects of Viscosity-Modifying Admixture and Nano-Clay on Fresh and Rheo-Viscoelastic Properties and Printability Characteristics of Cementitious Composites
  15. Kilic Ugur, Soliman Nancy, Omran Ahmed, Ozbulut Osman (2024-06)
    Effects of Cellulose Nanofibrils on Rheological and Mechanical Properties of 3D Printable Cement Composites
  16. Kruger Jacques, Cho Seung, Bester Frederick, Rooyen Algurnon et al. (2021-11)
    Nano-Technology for Improved Three-Dimensional Concrete Printing Constructability
  17. Liew A., López D., Mele Tom, Block Philippe (2017-02)
    Design, Fabrication and Testing of a Prototype, Thin-Vaulted, Unreinforced Concrete Floor
  18. Liu Junli, Tran Jonathan, Ginigaddara Thusitha, Mendis Priyan (2023-06)
    Exploration of Using Graphene Oxide for Strength Enhancement of 3D Printed Cementitious Mortar
  19. Long Wujian, Lin Can, Tao Jie-Lin, Ye Taohua et al. (2021-02)
    Printability and Particle-Packing of 3D Printable Limestone-Calcined-Clay-Cement Composites
  20. Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
    Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing
  21. Ma Lei, Zhang Qing, Jia Zijian, Liu Chao et al. (2021-11)
    Effect of Drying Environment on Mechanical Properties, Internal RH and Pore-Structure of 3D Printed Concrete
  22. Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
    Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
    A Review
  23. Peng Yiming, Unluer Cise (2022-12)
    Development of Alternative Cementitious Binders for 3D Printing Applications:
    A Critical Review of Progress, Advantages and Challenges
  24. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  25. Sikora Paweł, Techman Mateusz, Federowicz Karol, Khayatt Ahmed et al. (2022-07)
    Insight into the Microstructural and Durability Characteristics of 3D Printed Concrete:
    Cast versus Printed Specimens
  26. Song Hongwei, Li Xinle (2021-05)
    An Overview on the Rheology, Mechanical Properties, Durability, 3D Printing, and Microstructural Performance of Nanomaterials in Cementitious Composites
  27. Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
    Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing
  28. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  29. Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
    Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure
  30. Xu Zhuoyue, Zhang Dawang, Li Hui, Sun Xuemei et al. (2022-05)
    Effect of FA and GGBFS on Compressive Strength, Rheology, and Printing Properties of Cement-Based 3D Printing Material
  31. Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
    Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing
  32. Yu Shiwei, Sanjayan Jay, Du Hongjian (2022-07)
    Effects of Cement Mortar Characteristics on Aggregate-Bed 3D Concrete Printing
  33. Zaid Osama, Ouni Mohamed (2024-04)
    Advancements in 3D Printing of Cementitious Materials:
    A Review of Mineral Additives, Properties, and Systematic Developments
  34. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  35. Zhu He, Yu Kequan, McGee Wesley, Ng Tsz et al. (2021-11)
    Limestone-Calcined-Clay-Cement for Three-Dimensional Printed Engineered Cementitious Composites

4 Citations

  1. Ramezani Mahyar, Kilic Ugur, Sherif Muhammad, Arce Gabriel et al. (2025-12)
    Rheological Properties and Mechanical Response of Bio-Based Graphene Enhanced Additively Manufactured Cementitious Composites
  2. Jamjala Siva, Thulasirangan Lakshmidevi Manivannan, Reddy K., Kafle Bidur et al. (2025-10)
    A Critical Review on Synergistic Integration of Nanomaterials in 3D-Printed Concrete:
    Rheology to Microstructure and Eco-Functionality
  3. Bajwa Asad, Samarasinghe Don, Flemmer Claire, Bao Ding (2025-06)
    A Systematic Literature Review on the Thermal Behaviour of Building Elements Constructed Through 3D Concrete Printing (3DCP)
  4. Surehali Sahil, Venkatachalam Akshay, Divigalpitiya Ranjith, Kumar Aditya et al. (2025-06)
    Ultra-Low Dosages of Novel Graphene Types Enhance the Rheological Properties and Buildability of 3D Printed Binders

BibTeX
@article{bayt_gdeh_jian_arce.2024.RMaEPoPGECCwLaCC,
  author            = "Tugba Baytak and Tawfeeq Gdeh and Zhangfan Jiang and Gabriel Amador Arce and Lisa M. Colosi and Osman E. Ozbulut",
  title             = "Rheological, Mechanical, and Environmental Performance of Printable Graphene-Enhanced Cementitious Composites with Limestone and Calcined Clay",
  doi               = "10.1016/j.jobe.2024.110673",
  year              = "2024",
  journal           = "Journal of Building Engineering",
  volume            = "97",
  pages             = "110673",
}
Formatted Citation

T. Baytak, T. Gdeh, Z. Jiang, G. A. Arce, L. M. Colosi and O. E. Ozbulut, “Rheological, Mechanical, and Environmental Performance of Printable Graphene-Enhanced Cementitious Composites with Limestone and Calcined Clay”, Journal of Building Engineering, vol. 97, p. 110673, 2024, doi: 10.1016/j.jobe.2024.110673.

Baytak, Tugba, Tawfeeq Gdeh, Zhangfan Jiang, Gabriel Amador Arce, Lisa M. Colosi, and Osman E. Ozbulut. “Rheological, Mechanical, and Environmental Performance of Printable Graphene-Enhanced Cementitious Composites with Limestone and Calcined Clay”. Journal of Building Engineering 97 (2024): 110673. https://doi.org/10.1016/j.jobe.2024.110673.