The Theory of Critical Distances to Assess the Effect of Cracks & Manufacturing-Defects on the Static Strength of 3D Printed Concrete (2022-05)¶
10.1016/j.engfracmech.2022.108563
Alanazi Nawaf, , ,
Journal Article - Engineering Fracture Mechanics, Vol. 269
Abstract
The present paper deals with the use of the Theory of Critical Distances to model the detrimental effect of cracks and manufacturing defects in 3D-printed concrete subjected to static loading. The robustness of the proposed approach was assessed against a number of experimental results that were generated by testing, under three-point bending, 3D-printed rectangular section specimens weakened by saw-cut crack-like sharp notches, surface roughness (due to the extrusion filaments) and manufacturing defects. The sound agreement between experiments and predictive model allowed us to demonstrate that the Theory of Critical Distances is not only a reliable design approach, but also a powerful tool suitable for guiding and informing effectively the additive manufacturing process.
¶
15 References
- Babafemi Adewumi, Kolawole John, Miah Md, Paul Suvash et al. (2021-06)
A Concise Review on Inter-Layer Bond Strength in 3D Concrete Printing - Buswell Richard, Silva Wilson, Bos Freek, Schipper Roel et al. (2020-05)
A Process Classification Framework for Defining and Describing Digital Fabrication with Concrete - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Buswell Richard, Xu Jie, Becker Daniel, Dobrzanski James et al. (2022-04)
Geometric Quality Assurance for 3D Concrete Printing and Hybrid Construction Manufacturing Using a Standardised Test Part for Benchmarking Capability - Chen Yu, Çopuroğlu Oğuzhan, Rodríguez Claudia, Filho Fernando et al. (2021-02)
Characterization of Air-Void Systems in 3D Printed Cementitious Materials Using Optical Image Scanning and X-Ray Computed Tomography - Kristombu Baduge Shanaka, Navaratnam Satheeskumar, Zidan Yousef, McCormack Tom et al. (2021-01)
Improving Performance of Additive Manufactured Concrete:
A Review on Material Mix-Design, Processing, Inter-Layer Bonding, and Reinforcing-Methods - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Ma Guowei, Buswell Richard, Silva Wilson, Wang Li et al. (2022-03)
Technology Readiness:
A Global Snapshot of 3D Concrete Printing and the Frontiers for Development - Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar - Rehman Atta, Kim Jung-Hoon (2021-07)
3D Concrete Printing:
A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2021-06)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete:
Correction - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Wolfs Robert, Salet Theo, Roussel Nicolas (2021-10)
Filament-Geometry-Control in Extrusion-Based Additive Manufacturing of Concrete:
The Good, the Bad and the Ugly
13 Citations
- Benz Hendrik, Nguyen Trong The, Klemt-Albert Katharina (2025-11)
Real-Time Vision-Based Defect Detection for Large-Scale on-Site Earthen Additive Manufacturing:
Annotated Dataset and Dual-Model Framework - Yu Qian, Zhang Yamei, Pan Jinlong (2025-08)
Multi-Scale Orthotropic Damage Constitutive Model for 3D Printed Concrete Informed by Pore Structure - Maroszek Marcin, Hager Izabela, Mróz Katarzyna, Sitarz Mateusz et al. (2025-08)
Anisotropy of Mechanical Properties of 3D-Printed Materials:
Influence of Application Time of Subsequent Layers - Kolawole John, Buswell Richard, Mahmood Sultan, Isa Muhammed et al. (2025-02)
On the Origins of Anisotropy of Extrusion-Based 3D Printed Concrete:
The Roles of Filament Skin and Agglomeration - Chen Wei, Guan Yongying, Zhu Binrong, Han Jinsheng et al. (2025-01)
Influence of Extruded Strip-Shape and Dimension on the Mechanical Properties and Pore-Characteristics of 3D Printed Geopolymer Concrete - Shazad Qamar, Li Fangyuan (2025-01)
Interfacial Bond-Effects on Shear-Strength and Damage in 3D Printed Concrete Structures:
A Combined Experimental and Numerical Study - Maroszek Marcin, Rudziewicz Magdalena, Hutyra Adam, Dziura Paweł et al. (2024-12)
Evaluation of 3D Concrete Printing Extrusion-Efficiency - Zhao Hongyu, Sun Junbo, Wang Xiangyu, Wang Yufei et al. (2024-12)
Real-Time and High-Accuracy Defect Monitoring for 3D Concrete Printing Using Transformer Networks - Zhao Hongyu, Wang Xiangyu, Sun Junbo, Wang Yufei et al. (2024-04)
Artificial Intelligence Powered Real-Time Quality Monitoring for Additive Manufacturing in Construction - Susmel Luca (2024-02)
Theory of Critical Distances and Notched Filament-Based 3D Printed Components:
Lessons Learned from Polymers and Concrete - Liu Dawei, Zhang Zhigang, Zhang Xiaoyue, Chen Zhaohui (2023-09)
3D Printing Concrete Structures:
State of the Art, Challenges, and Opportunities - Zbyszyński Wojciech, Pietras Daniel, Sadowski Tomasz (2023-04)
Data-Image-Correlation-Analysis of the Destruction-Process of 3D Printable Layered Beams Subjected to the Three-Point Bending Process - Alanazi Nawaf, Kolawole John, Buswell Richard, Susmel Luca (2022-07)
The Theory of Critical Distances to Perform the Static Assessment of 3D Printed Concrete Weakened by Manufacturing-Defects and Cracks
BibTeX
@article{alan_kola_busw_susm.2022.TToCDtAtEoCMDotSSo3PC,
author = "Nawaf Alanazi and John Temitope Kolawole and Richard A. Buswell and Luca Susmel",
title = "The Theory of Critical Distances to Assess the Effect of Cracks & Manufacturing-Defects on the Static Strength of 3D Printed Concrete",
doi = "10.1016/j.engfracmech.2022.108563",
year = "2022",
journal = "Engineering Fracture Mechanics",
volume = "269",
}
Formatted Citation
N. Alanazi, J. T. Kolawole, R. A. Buswell and L. Susmel, “The Theory of Critical Distances to Assess the Effect of Cracks & Manufacturing-Defects on the Static Strength of 3D Printed Concrete”, Engineering Fracture Mechanics, vol. 269, 2022, doi: 10.1016/j.engfracmech.2022.108563.
Alanazi, Nawaf, John Temitope Kolawole, Richard A. Buswell, and Luca Susmel. “The Theory of Critical Distances to Assess the Effect of Cracks & Manufacturing-Defects on the Static Strength of 3D Printed Concrete”. Engineering Fracture Mechanics 269 (2022). https://doi.org/10.1016/j.engfracmech.2022.108563.