A Comprehensive Experimental Investigation of Anisotropy Behavior on Highly Carbon-Minimized 3D Printed Concrete (2025-07)¶
10.1016/j.conbuildmat.2025.142766
, ,
Journal Article - Construction and Building Materials, Vol. 491, No. 142766
Abstract
Free-form or layer-by-layer 3D printed concrete (3DPC) exhibits an anisotropy effect, in which the material behaves differently in different loading directions. This study explores the anisotropy in highly carbon-minimized 3DPC, incorporating large volumes of ground granulated blast furnace slag (GGBS) to enhance sustainability. Mechanical tests were performed on 3DPC specimens in three different loading directions (X, Y, Z), and compressive strength was evaluated based on various cube extraction locations within the printed structure, considering the potential impact of overburden stress and confinement. Statistical analysis was performed to identify variations in compressive strength based on specimen location and loading direction in both printed and cast specimens. The findings show that anisotropy was more prominent in mixtures with 100 % ordinary Portland cement (OPC) compared to those with high volumes of GGBS, suggesting that GGBS enhances material uniformity and reduces strength variability. Statistical analysis reveals that the middle sections of the printed specimens demonstrated more consistent strength, while the outer edges exhibited higher variability and more outliers.
¶
39 References
- Bong Shin, Nematollahi Behzad, Nazari Ali, Xia Ming et al. (2019-03)
Method of Optimization for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications - Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture - Chen Yu, Rodríguez Claudia, Li Zhenming, Chen Boyu et al. (2020-07)
Effect of Different Grade Levels of Calcined Clays on Fresh and Hardened Properties of Ternary-Blended Cementitious Materials for 3D Printing - Chen Yuning, Zhang Yamei, Xie Yudong, Zhang Zedi et al. (2022-09)
Unraveling Pore-Structure Alternations in 3D Printed Geopolymer Concrete and Corresponding Impacts on Macro-Properties - Colyn Markus, Zijl Gideon, Babafemi Adewumi (2024-02)
Fresh and Strength Properties of 3D Printable Concrete Mixtures Utilising a High Volume of Sustainable Alternative Binders - Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
Hardened Properties of Layered 3D Printed Concrete with Recycled Sand - Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2020-05)
Mechanical Behavior of Printed Strain-Hardening Cementitious Composites - Giridhar Greeshma, Prem Prabhat, Kumar Shankar (2023-01)
Development of Concrete Mixes for 3D Printing Using Simple Tools and Techniques - Hasani Alireza, Dorafshan Sattar (2024-06)
Transforming Construction?:
Evaluation of the State of Structural 3D Concrete Printing in Research and Practice - Ingle Vaibhav, Kaliyavaradhan Senthil, Ambily Parukutty, Shekar Deepadharshan (2023-09)
3D Printable Concrete Without Chemical Admixtures:
Fresh and Hardened Properties - Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
Cementitious Materials for Construction-Scale 3D Printing:
Laboratory Testing of Fresh Printing Mixture - Khanverdi Mohsen, Das Sreekanta (2025-03)
Testing Prisms as a Method for Assessing Compressive Properties of 3D-Printed Structural Members:
Experimental and Numerical Studies - Kolawole John, Buswell Richard, Mahmood Sultan, Isa Muhammed et al. (2025-02)
On the Origins of Anisotropy of Extrusion-Based 3D Printed Concrete:
The Roles of Filament Skin and Agglomeration - Kreiger Megan, Kreiger Eric, Mansour Stephan, Monkman Sean et al. (2024-09)
Additive Construction in Practice:
Realities of Acceptance Criteria - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Li Zhanzhao, Hojati Maryam, Wu Zhengyu, Piasente Jonathon et al. (2020-07)
Fresh and Hardened Properties of Extrusion-Based 3D Printed Cementitious Materials:
A Review - Liu Bing, Liu Xiaoyan, Li Guangtao, Geng Songyuan et al. (2022-09)
Study on Anisotropy of 3D Printing PVA-Fiber-Reinforced Concrete Using Destructive and Non-Destructive Testing Methods - Liu Chenkang, Yue Songlin, Zhou Cong, Sun Honglei et al. (2021-08)
Anisotropic Mechanical Properties of Extrusion-Based 3D Printed Layered Concrete - Liu Chao, Zhang Rongfei, Liu Huawei, He Chunhui et al. (2021-11)
Analysis of the Mechanical Performance and Damage Mechanism for 3D Printed Concrete Based on Pore-Structure - Ma Guowei, Buswell Richard, Silva Wilson, Wang Li et al. (2022-03)
Technology Readiness:
A Global Snapshot of 3D Concrete Printing and the Frontiers for Development - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Mim Nusrat, Shaikh Faiz, Sarker Prabir (2025-03)
Sustainable 3D Printed Concrete Incorporating Alternative Fine Aggregates:
A Review - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing - Pasupathy Kirubajiny, Ramakrishnan Sayanthan, Sanjayan Jay (2023-01)
3D Concrete Printing of Eco-Friendly Geopolymer Containing Brick Waste - Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
Steel-Fiber-Reinforced 3D Printed Concrete:
Influence of Fiber Sizes on Mechanical Performance - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
Mechanical Characterization of 3D Printable Concrete - Rehman Atta, Kim Jung-Hoon (2021-07)
3D Concrete Printing:
A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics - Singh Amardeep, Liu Qiong, Xiao Jianzhuang, Lyu Qifeng (2022-02)
Mechanical and Macrostructural Properties of 3D Printed Concrete Dosed with Steel-Fibers under Different Loading-Direction - Sun Bochao, Li Peichen, Wang Dianchao, Ye Jun et al. (2023-03)
Evaluation of Mechanical Properties and Anisotropy of 3D Printed Concrete at Different Temperatures - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Ting Guan, Tay Yi, Tan Ming (2021-04)
Experimental Measurement on the Effects of Recycled Glass-Cullets as Aggregates for Construction 3D Printing - Vasilić Ksenija (2025-02)
Standardization Aspects of Concrete 3D Printing - Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete - Zhang Kaijian, Lin Wenqiang, Zhang Qingtian, Wang Dehui et al. (2024-07)
Evaluation of Anisotropy and Statistical Parameters of Compressive Strength for 3D Printed Concrete - Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
Fresh Properties of a Novel 3D Printing Concrete Ink - Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete - Zhao Yasong, Gao Yangyunzhi, Chen Gaofeng, Li Shujun et al. (2023-04)
Development of Low-Carbon Materials from GGBS and Clay-Brick-Powder for 3D Concrete Printing
0 Citations
BibTeX
@article{yeri_du_poh.2025.ACEIoABoHCM3PC,
author = "Utami Yerikania and Hongjian Du and Leong Hien Poh",
title = "A Comprehensive Experimental Investigation of Anisotropy Behavior on Highly Carbon-Minimized 3D Printed Concrete",
doi = "10.1016/j.conbuildmat.2025.142766",
year = "2025",
journal = "Construction and Building Materials",
volume = "491",
pages = "142766",
}
Formatted Citation
U. Yerikania, H. Du and L. H. Poh, “A Comprehensive Experimental Investigation of Anisotropy Behavior on Highly Carbon-Minimized 3D Printed Concrete”, Construction and Building Materials, vol. 491, p. 142766, 2025, doi: 10.1016/j.conbuildmat.2025.142766.
Yerikania, Utami, Hongjian Du, and Leong Hien Poh. “A Comprehensive Experimental Investigation of Anisotropy Behavior on Highly Carbon-Minimized 3D Printed Concrete”. Construction and Building Materials 491 (2025): 142766. https://doi.org/10.1016/j.conbuildmat.2025.142766.