Skip to content

Artificial Intelligence-Based Displacement Capacity Prediction Tool for Three-Dimensional Printed Concrete Walls (2025-03)

10.1002/suco.70039

 Özalp Abdulkadir,  Aldemir Alper
Journal Article - Structural Concrete

Abstract

Digital technology applications such as three-dimensional printers offer novel avenues for automating the construction of concrete structures. The process of 3D printing concrete structures involves designing in an office setting and printing on-site. This sequential approach to 3D printing makes achieving fully automated practice unfeasible. To address the goal of achieving fully automated 3D concrete printing, this study proposes an automated design tool utilizing artificial intelligence (AI) techniques to ascertain the capacities of 3Dprinted concrete walls and conduct the necessary design tasks for each wall. Moreover, this automated design tool is capable of determining the most efficient section geometry for the intended 3D-printed wall geometry. Consequently, the AI model identifies the most cost-effective and lightweight crosssection topology with the desired strength without requiring trial and error, thus eliminating the need for human intervention in the design process.

41 References

  1. Alabbasi Mohammad, Agkathidis Asterios, Chen Hanmei (2023-01)
    Robotic 3D Printing of Concrete Building Components for Residential Buildings in Saudi Arabia
  2. Aramburu Amaia, Calderon-Uriszar-Aldaca Iñigo, Puente Iñigo (2023-02)
    Parametric Modelling of 3D Printed Concrete Segmented Beams with Rebars Under Bending Moments
  3. Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
    3D Printing of Reinforced Concrete Elements:
    Technology and Design Approach
  4. Bi Minghao, Tran Jonathan, Xia Lingwei, Ma Guowei et al. (2022-06)
    Topology-Optimization for 3D Concrete Printing with Various Manufacturing-Constraints
  5. Carneau Paul, Mesnil Romain, Roussel Nicolas, Baverel Olivier (2020-04)
    Additive Manufacturing of Cantilever:
    From Masonry to Concrete 3D Printing
  6. Chang Ze, Liang Minfei, Xu Yading, Schlangen Erik et al. (2022-08)
    3D Concrete Printing:
    Lattice Modeling of Structural Failure considering Damage and Deformed Geometry
  7. Chang Ze, Wan Zhi, Xu Yading, Schlangen Erik et al. (2022-06)
    Convolutional Neural Network for Predicting Crack-Pattern and Stress-Crack-Width Curve of Air-Void Structure in 3D Printed Concrete
  8. Chang Ze, Xu Yading, Chen Yu, Gan Yidong et al. (2021-05)
    A Discrete Lattice-Model for Assessment of Buildability Performance of 3D Printed Concrete
  9. Daungwilailuk Totsawat, Pheinsusom Phoonsak, Pansuk Withit (2021-01)
    Uniaxial Load Testing of Large-Scale 3D Printed Concrete Wall and Finite-Element-Model-Analysis
  10. Ekanayaka Virama, Lachmayer Lukas, Raatz Annika, Hürkamp André (2022-06)
    Approach to Optimize the Inter-Layer Waiting Time in Additive Manufacturing with Concrete Utilizing FEM Modeling
  11. Geng Songyuan, Luo Qiling, Liu Kun, Li Yunchao et al. (2023-02)
    Research Status and Prospect of Machine Learning in Construction 3D Printing
  12. He Lewei, Chow Wai, Li Hua (2020-06)
    Effects of Inter-Layer Notch and Shear Stress on Inter-Layer Strength of 3D Printed Cement-Paste
  13. Heever Marchant, Bester Frederick, Kruger Jacques, Zijl Gideon (2021-07)
    Mechanical Characterisation for Numerical Simulation of Extrusion-Based 3D Concrete Printing
  14. Heever Marchant, Bester Frederick, Kruger Jacques, Zijl Gideon (2021-12)
    Numerical Modelling-Strategies for Reinforced 3D Concrete Printed Elements
  15. Izadgoshasb Hamed, Kandiri Amirreza, Shakor Pshtiwan, Laghi Vittoria et al. (2021-11)
    Predicting Compressive Strength of 3D Printed Mortar in Structural Members Using Machine Learning
  16. Khan Shoukat, Koç Muammer (2022-10)
    Numerical Modelling and Simulation for Extrusion-Based 3D Concrete Printing:
    The Underlying Physics, Potential, and Challenges
  17. Khan Mohammad, Sanchez Florence, Zhou Hongyu (2020-04)
    3D Printing of Concrete:
    Beyond Horizons
  18. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2020-04)
    A Rheology-Based Quasi-Static Shape-Retention-Model for Digitally Fabricated Concrete
  19. Lachmayer Lukas, Ekanayaka Virama, Hürkamp André, Raatz Annika (2021-11)
    Approach to an Optimized Printing Path for Additive Manufacturing in Construction Utilizing FEM Modeling
  20. Lao Wenxin, Li Mingyang, Wong Teck, Tan Ming et al. (2020-02)
    Improving Surface-Finish-Quality in Extrusion-Based 3D Concrete Printing Using Machine-Learning-Based Extrudate-Geometry-Control
  21. Liu Haoran, Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2022-04)
    Buildability Prediction of 3D Printed Concrete at Early-Ages:
    A Numerical Study with Drucker-Prager-Model
  22. Liu Hanqiu, Egbe King-James, Wang Haipeng, Nazar Ali et al. (2021-11)
    A Numerical Study on 3D Printed Cementitious Composites Mixes Subjected to Axial Compression
  23. Nedjar Boumediene (2021-07)
    On a Geometrically Non-Linear Incremental Formulation for the Modeling of 3D Concrete Printing
  24. Nefs Karsten, Menkovski Vlado, Bos Freek, Suiker Akke et al. (2022-12)
    Automated Image Segmentation of 3D Printed Fibrous Composite Micro-Structures Using a Neural Network
  25. Nguyen Vuong, Li Shuai, Liu Junli, Nguyen Kien et al. (2022-11)
    Modelling of 3D Concrete Printing Process:
    A Perspective on Material and Structural Simulations
  26. Nguyen Vuong, Liu Junli, Li Shuai, Zhang Guomin et al. (2022-10)
    Modelling of 3D Printed Bio-Inspired Bouligand Cementitious Structures Reinforced with Steel-Fibers
  27. Nguyen Vuong, Nguyen-Xuan Hung, Panda Biranchi, Tran Jonathan (2022-03)
    3D Concrete Printing Modelling of Thin-Walled Structures
  28. Nguyen Vuong, Panda Biranchi, Zhang Guomin, Nguyen-Xuan Hung et al. (2021-01)
    Digital Design Computing and Modelling for 3D Concrete Printing
  29. Ooms Ticho, Vantyghem Gieljan, Coile Ruben, Corte Wouter (2020-12)
    A Parametric Modelling-Strategy for the Numerical Simulation of 3D Concrete Printing with Complex Geometries
  30. Özkılıç Hamza, İlcan Hüseyin, Aminipour Ehsan, Tuğluca Merve et al. (2023-08)
    Bond Properties and Anisotropy Performance of 3D Printed Construction and Demolition Waste-Based Geopolymers:
    Effect of Operational- and Material-Oriented Parameters
  31. Perrot Arnaud, Pierre Alexandre, Nerella Venkatesh, Wolfs Robert et al. (2021-07)
    From Analytical Methods to Numerical Simulations:
    A Process Engineering Toolbox for 3D Concrete Printing
  32. Roussel Nicolas, Spangenberg Jon, Wallevik Jon, Wolfs Robert (2020-06)
    Numerical Simulations of Concrete Processing:
    From Standard Formative Casting to Additive Manufacturing
  33. Sergis Vasileios, Ouellet-Plamondon Claudiane (2022-07)
    Automating Mix-Design for 3D Concrete Printing Using Optimization Methods
  34. Sun Jingting, Xiao Jianzhuang, Li Zhengrong, Feng Xiwen (2021-03)
    Experimental Study on the Thermal Performance of a 3D Printed Concrete Prototype Building
  35. Vantyghem Gieljan, Corte Wouter, Shakour Emad, Amir Oded (2020-01)
    3D Printing of a Post-Tensioned Concrete Girder Designed by Topology-Optimization
  36. Wang Li, Jiang Hailong, Li Zhijian, Ma Guowei (2020-02)
    Mechanical Behaviors of 3D Printed Lightweight Concrete Structure with Hollow Section
  37. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  38. Wolfs Robert, Bos Freek, Salet Theo (2019-06)
    Triaxial Compression Testing on Early-Age Concrete for Numerical Analysis of 3D Concrete Printing
  39. Xiao Jianzhuang, Hou Shaodan, Duan Zhenhua, Zou Shuai (2023-01)
    Rheology of 3D Printable Concrete Prepared by Secondary Mixing of Ready-Mix Concrete
  40. Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
    Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure
  41. Yao Xiaofei, Lyu Xin, Sun Junbo, Wang Bolin et al. (2023-03)
    AI-Based Performance Prediction for 3D Printed Concrete Considering Anisotropy and Steam-Curing Condition

1 Citations

  1. Lin Xing-Tao, Xu Shuhao, Chen Xiangsheng (2025-08)
    Optimization of Building Structures Based on Additive Manufacturing:
    A Review

BibTeX
@article{ozal_alde.2025.AIBDCPTfTDPCW,
  author            = "Abdulkadir Özalp and Alper Aldemir",
  title             = "Artificial Intelligence-Based Displacement Capacity Prediction Tool for Three-Dimensional Printed Concrete Walls",
  doi               = "10.1002/suco.70039",
  year              = "2025",
  journal           = "Structural Concrete",
}
Formatted Citation

A. Özalp and A. Aldemir, “Artificial Intelligence-Based Displacement Capacity Prediction Tool for Three-Dimensional Printed Concrete Walls”, Structural Concrete, 2025, doi: 10.1002/suco.70039.

Özalp, Abdulkadir, and Alper Aldemir. “Artificial Intelligence-Based Displacement Capacity Prediction Tool for Three-Dimensional Printed Concrete Walls”. Structural Concrete, 2025. https://doi.org/10.1002/suco.70039.