Skip to content

Performance of Lightweight, Reinforced, and Assemblable 3D-Printed Concrete Columns with Low-Carbon Engineered Cementitious Composites (2026-01)

10.1016/j.engstruct.2026.122133

 van Nguyen Vuong, Jie Cheah, Lao Junying, Huanyu Zhao,  Qian Shunzhi
Journal Article - Engineering Structures, Vol. 352, No. 122133

Abstract

This study proposes a novel approach to fabricating lightweight, reinforced, and modular concrete columns via 3D concrete printing using low-carbon engineered cementitious composites (ECC). Two printable mixtures, incorporating only 20 % cement in the binder system and two polyethene (PE) fibre dosages (0 % and 1 %), are optimised for extrusion-based printability, structural performance, and sustainability. A sinusoidal infill geometry is employed to facilitate reinforcement placement, enhance load transfer, and minimise material usage. Material characterisation includes fresh state flowability and rheology, as well as compressive and tensile testing. Uniaxial compression tests on assembled columns indicate that the fibre-reinforced ECC column increases peak load by 24.7 % and enhances ductility compared to the fibre-free counterpart. Comparative analysis with traditional reinforced-concrete columns cast with 3D-printed concrete permanent formworks reveals that the proposed column system achieved higher structural efficiency (55 % higher automation in fabrication, 30 % and over 200 % higher in compressive strength and strain at peak, respectively) and up to 50 % lower environmental impact. These results highlight the potential of integrated material-geometry-process design strategies to advance scalable, sustainable, and high-performance structural elements in automated construction.

45 References

  1. Anton Ana-Maria, Reiter Lex, Wangler Timothy, Frangez Valens et al. (2020-12)
    A 3D Concrete Printing Prefabrication Platform for Bespoke Columns
  2. Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
    3D Printing of Reinforced Concrete Elements:
    Technology and Design Approach
  3. Asprone Domenico, Menna Costantino, Bos Freek, Salet Theo et al. (2018-06)
    Rethinking Reinforcement for Digital Fabrication with Concrete
  4. Bos Freek, Ahmed Zeeshan, Jutinov Evgeniy, Salet Theo (2017-11)
    Experimental Exploration of Metal-Cable as Reinforcement in 3D Printed Concrete
  5. Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
    Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers
  6. Bos Freek, Menna Costantino, Pradena Mauricio, Kreiger Eric et al. (2022-03)
    The Realities of Additively Manufactured Concrete Structures in Practice
  7. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  8. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  9. Gebhard Lukas, Mata-Falcón Jaime, Anton Ana-Maria, Dillenburger Benjamin et al. (2021-04)
    Structural Behavior of 3D Printed Concrete Beams with Various Reinforcement-Strategies
  10. Heras Murica Daniel, Genedy Moneeb, Taha Mahmoud (2020-09)
    Examining the Significance of Infill-Printing-Pattern on the Anisotropy of 3D Printed Concrete
  11. Kristombu Baduge Shanaka, Navaratnam Satheeskumar, Zidan Yousef, McCormack Tom et al. (2021-01)
    Improving Performance of Additive Manufactured Concrete:
    A Review on Material Mix-Design, Processing, Inter-Layer Bonding, and Reinforcing-Methods
  12. Li Haodao, Addai-NImoh Alfred, Kreiger Eric, Khayat Kamal (2023-12)
    Methodology to Design Eco-Friendly Fiber-Reinforced Concrete for 3D Printing
  13. Li Victor, Bos Freek, Yu Kequan, McGee Wesley et al. (2020-04)
    On the Emergence of 3D Printable Engineered, Strain-Hardening Cementitious Composites
  14. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  15. Lim Jian, Panda Biranchi, Pham Quang-Cuong (2018-05)
    Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel-Cable-Reinforcement
  16. Liu Zhenbang, Li Mingyang, Wang Xiangyu, Wang Sizhe et al. (2024-07)
    Axial Performances of the Steel-Rebar-Reinforced Column Confined by the Steel-Cable-Reinforced 3D Concrete Printing Permanent Formwork
  17. Liu Junli, Tran Jonathan, Nguyen Vuong, Gunasekara Chamila et al. (2023-06)
    3D Printing of Cementitious Mortar with Milled Recycled Carbon-Fibers:
    Influences of Filament Offset on Mechanical Properties
  18. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  19. Lu Bing, Zhu Weiping, Weng Yiwei, Liu Zhixin et al. (2020-02)
    Study of MgO-Activated-Slag as a Cementless Material for Sustainable Spray-Based 3D Printing
  20. Ma Guowei, Buswell Richard, Silva Wilson, Wang Li et al. (2022-03)
    Technology Readiness:
    A Global Snapshot of 3D Concrete Printing and the Frontiers for Development
  21. Marchment Taylor, Sanjayan Jay (2019-10)
    Mesh Reinforcing Method for 3D Concrete Printing
  22. Marchment Taylor, Sanjayan Jay (2021-04)
    Reinforcement Method for 3D Concrete Printing Using Paste-Coated Bar Penetrations
  23. Mechtcherine Viktor, Grafe Jasmin, Nerella Venkatesh, Spaniol Erik et al. (2018-05)
    3D Printed Steel-Reinforcement for Digital Concrete Construction:
    Manufacture, Mechanical Properties and Bond Behavior
  24. Nguyen Vuong, Liu Junli, Li Shuai, Zhang Guomin et al. (2022-10)
    Modelling of 3D Printed Bio-Inspired Bouligand Cementitious Structures Reinforced with Steel-Fibers
  25. Nguyen Vuong, Nguyen-Xuan Hung, Panda Biranchi, Tran Jonathan (2022-03)
    3D Concrete Printing Modelling of Thin-Walled Structures
  26. Nguyen Vuong, Panda Biranchi, Zhang Guomin, Nguyen-Xuan Hung et al. (2021-01)
    Digital Design Computing and Modelling for 3D Concrete Printing
  27. Nguyen Vuong, Tran Jonathan, San Ha Ngoc, Xie Yi et al. (2024-08)
    Blast-Resistance of 3D Printed Bouligand Concrete Panels Reinforced with Steel-Fibers:
    Numerical Investigations
  28. Rehman Atta, Kim Jung-Hoon (2021-07)
    3D Concrete Printing:
    A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
  29. Rudziewicz Magdalena, Hutyra Adam, Maroszek Marcin, Korniejenko Kinga et al. (2025-04)
    3D-Printed Lightweight Foamed Concrete with Dispersed Reinforcement
  30. Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
    Design of a 3D Printed Concrete Bridge by Testing
  31. Ting Guan, Tay Yi, Qian Ye, Tan Ming (2019-03)
    Utilization of Recycled Glass for 3D Concrete Printing:
    Rheological and Mechanical Properties
  32. Tošić Zlata, Eichenauer Martin, Ivaniuk Egor, Lordick Daniel et al. (2022-07)
    Design and Optimization of Free-Form Surfaces for Modular Concrete 3D Printing
  33. Vantyghem Gieljan, Corte Wouter, Shakour Emad, Amir Oded (2020-01)
    3D Printing of a Post-Tensioned Concrete Girder Designed by Topology-Optimization
  34. Vargas José, Sjölander Andreas, Westerlind Helena, Silfwerbrand Johan (2024-05)
    Internal Topology-Optimization of 3D Printed Concrete Structures:
    A Method for Enhanced Performance and Material-Efficiency
  35. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  36. Wang Qiang, Yang Wenwei, Wang Li, Bai Gang et al. (2025-03)
    Reinforcement Design and Structural Performance for the Topology Optimized 3D Printed Concrete Truss Beams
  37. Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
    Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing
  38. Yang In-Hwan, Bui The, Park Jihun, Jeong Seung-Tae (2023-10)
    A Feasibility Study on the Lateral Behavior of a 3D Printed Column for Application in a Wind Turbine Tower
  39. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
    Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber
  40. Ye Junhong, Teng Fei, Yu Jie, Yu Shiwei et al. (2023-08)
    Development of 3D Printable Engineered Cementitious Composites with Incineration-Bottom-Ash for Sustainable and Digital Construction
  41. Yu Shiwei, Du Hongjian, Sanjayan Jay (2020-07)
    Aggregate-Bed 3D Concrete Printing with Cement-Paste Binder
  42. Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
    3D Printable Engineered Cementitious Composites:
    Fresh and Hardened Properties
  43. Zhang Yi, Jiang Zhengwu, Zhu Yanmei, Zhang Jie et al. (2020-10)
    Effects of Redispersible Polymer-Powders on the Structural Build-Up of 3D Printing Cement Paste with and without Hydroxypropyl-Methylcellulose
  44. Zhou Wen, Xu Yading, Meng Zhaozheng, Xie Jinbao et al. (2025-03)
    Filament Stitching:
    An Architected Printing Strategy to Mitigate Anisotropy in 3D-Printed Engineered Cementitious Composites
  45. Zhu Binrong, Nematollahi Behzad, Pan Jinlong, Zhang Yang et al. (2021-04)
    3D Concrete Printing of Permanent Formwork for Concrete Column Construction

0 Citations

BibTeX
@article{nguy_jie_lao_huan.2026.PoLRaA3PCCwLCECC,
  author            = "Vuong van Nguyen and Cheah Chun Jie and Junying Lao and Zhao Huanyu and Shunzhi Qian",
  title             = "Performance of Lightweight, Reinforced, and Assemblable 3D-Printed Concrete Columns with Low-Carbon Engineered Cementitious Composites",
  doi               = "10.1016/j.engstruct.2026.122133",
  year              = "2026",
  journal           = "Engineering Structures",
  volume            = "352",
  pages             = "122133",
}
Formatted Citation

V. van Nguyen, C. C. Jie, J. Lao, Z. Huanyu and S. Qian, “Performance of Lightweight, Reinforced, and Assemblable 3D-Printed Concrete Columns with Low-Carbon Engineered Cementitious Composites”, Engineering Structures, vol. 352, p. 122133, 2026, doi: 10.1016/j.engstruct.2026.122133.

Nguyen, Vuong van, Cheah Chun Jie, Junying Lao, Zhao Huanyu, and Shunzhi Qian. “Performance of Lightweight, Reinforced, and Assemblable 3D-Printed Concrete Columns with Low-Carbon Engineered Cementitious Composites”. Engineering Structures 352 (2026): 122133. https://doi.org/10.1016/j.engstruct.2026.122133.