The Role of Different Clay Types in Achieving Low-Carbon 3D Printed Concretes (2024-07)¶
Hanratty Niall, ,
Journal Article - Buildings, Vol. 14, Iss. 7, No. 2194
Abstract
Concrete 3D printing, an innovative construction technology, offers reduced material waste, increased construction speed, and the ability to create complex and customized shapes that are challenging to achieve with traditional methods. This study delves into the unique fresh-state performance required for 3D printing concrete, discussing buildability, extrudability, and shape retention in terms of concrete rheology, which can be modified using admixtures. Currently most 3D printing concretes feature high cement contents, with little use of secondary cementitious materials. This leads to high embodied carbon, and addressing this is a fundamental objective of this work. The research identifies attapulgite, bentonite, and sepiolite clay as potential concrete admixtures to tailor concrete rheology. Eight low-carbon concrete mixes are designed to incorporate GGBS at a 50% replacement level and are used to measure the influence of each clay on the concrete rheology at varying dosages. A comprehensive rheological test protocol is designed and carried out on all mixes, together with other tests including slump-flow and compression strength. The objective is to determine the applicability of each clay in improving the printability of low-carbon concrete. The findings reveal that at a dosage of 0.5%, sepiolite was seen to improve static yield stress, dynamic yield stress, and rate of re-flocculation, resulting in improved printability. The addition of attapulgite and sepiolite at a dosage of 0.5% by mass of binder increased compressive strength significantly; bentonite had very little influence. These gains are not repeated at 1% clay content, indicating that there may be an optimum clay content. The results are considered encouraging and show the potential of these clays to enhance the performance of low-carbon concrete in 3D printing applications.
¶
22 References
- Arunothayan Arun, Nematollahi Behzad, Khayat Kamal, Ramesh Akilesh et al. (2022-11)
Rheological Characterization of Ultra-High-Performance Concrete for 3D Printing - Aydin Eylül, Kara Burhan, Bundur Zeynep, Özyurt Nilüfer et al. (2022-08)
A Comparative Evaluation of Sepiolite and Nano-Montmorillonite on the Rheology of Cementitious Materials for 3D Printing - Chang Ze, Chen Yu, Schlangen Erik, Šavija Branko (2023-09)
A Review of Methods on Buildability Quantification of Extrusion-Based 3D Concrete Printing:
From Analytical Modelling to Numerical Simulation - Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite - Deshmukh Aparna, Heintzkill Reed, Huerta Rosalba, Sobolev Konstantin (2021-11)
Rheological Response of Magnetorheological Cementitious Inks Tuned for Active Control in Digital Construction - Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
Large-Scale 3D Printing of Ultra-High-Performance Concrete:
A New Processing Route for Architects and Builders - Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
A Review of 3D Printed Concrete:
Performance-Requirements, Testing Measurements and Mix-Design - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Mendoza Reales Oscar, Duda Pedro, Silva Emílio, Paiva Maria et al. (2019-06)
Nanosilica-Particles as Structural Buildup Agents for 3D Printing with Portland Cement-Pastes - Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2022-06)
Mitigating Early-Age Cracking in 3D Printed Concrete Using Fibers, Superabsorbent Polymers, Shrinkage Reducing Admixtures, B-CSA Cement and Curing Measures - Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
Additive Manufacturing (3D Printing):
A Review of Materials, Methods, Applications and Challenges - Nodehi Mehrab, Ozbakkaloglu Togay, Gholampour Aliakbar (2022-04)
Effect of Supplementary Cementitious Materials on Properties of 3D Printed Conventional and Alkali-Activated Concrete:
A Review - Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay - Razzaghian Ghadikolaee Mehrdad, Cerro-Prada Elena, Pan Zhu, Korayem Asghar (2023-04)
Nanomaterials as Promising Additives for High-Performance 3D Printed Concrete:
A Critical Review - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2021-11)
Role of Chemical Admixtures on 3D Printed Portland Cement:
Assessing Rheology and Buildability - Suryanto Benny, Higgins J., Aitken M., Tambusay Asdam et al. (2023-10)
Developments in Portland Cement/GGBS Binders for 3D Printing Applications:
Material-Calibration and Structural Testing - Varela Hugo, Barluenga Gonzalo, Perrot Arnaud (2023-07)
Extrusion and Structural Build-Up of 3D Printing Cement-Pastes with Fly-Ash, Nano-Clay and VMAs - Yao Xiaofei, Lyu Xin, Sun Junbo, Wang Bolin et al. (2023-03)
AI-Based Performance Prediction for 3D Printed Concrete Considering Anisotropy and Steam-Curing Condition - Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
Fresh Properties of a Novel 3D Printing Concrete Ink - Zhong Hui, Zhang Mingzhong (2022-02)
3D Printing Geopolymers:
A Review
8 Citations
- Si Wen, Khan Mehran, McNally Ciaran (2025-11)
Rheological Optimization and Mechanical Performance Assessment of High-Volume GGBS-Silica Fume Mortars for 3D Printing - Bradshaw James, Balasubramanian Swathi, Si Wen, Khan Mehran et al. (2025-10)
Towards Greener 3D Printing:
A Performance Evaluation of Silica Fume-Modified Low-Carbon Concrete - Si Wen, Hopkins Ben, Khan Mehran, McNally Ciaran (2025-09)
Towards Sustainable Mortar:
Optimising Sika-Fiber Dosage in Ground Granulated Blast Furnace Slag and Silica Fume Blends for 3D Concrete Printing - Si Wen, Carr Liam, Zia Asad, Khan Mehran et al. (2025-08)
Advancing 3D Printable Concrete with Nanoclays:
Rheological and Mechanical Insights for Construction Applications - Si Wen, Khan Mehran, McNally Ciaran (2025-08)
Effect of Nano Silica with High Replacement of GGBS on Enhancing Mechanical Properties and Rheology of 3D Printed Concrete - Goel Devansh, Kore Sudarshan (2025-07)
Mapping the Bibliometric Progression of 3D Concrete Printing:
A Concise Review - Bradshaw James, Si Wen, Khan Mehran, McNally Ciaran (2025-07)
Emerging Insights into the Durability of 3D-Printed Concrete:
Recent Advances in Mix Design Parameters and Testing - Irshidat Mohammad, Amjad Umar, Kumar Kishor, John John et al. (2025-06)
Enhancing the Mix Design in 3D Concrete Printing Through Systematic Optimization Process
BibTeX
@article{hanr_khan_mcna.2024.TRoDCTiALC3PC,
author = "Niall Hanratty and Mehran Khan and Ciaran McNally",
title = "The Role of Different Clay Types in Achieving Low-Carbon 3D Printed Concretes",
doi = "10.3390/buildings14072194",
year = "2024",
journal = "Buildings",
volume = "14",
number = "7",
pages = "2194",
}
Formatted Citation
N. Hanratty, M. Khan and C. McNally, “The Role of Different Clay Types in Achieving Low-Carbon 3D Printed Concretes”, Buildings, vol. 14, no. 7, p. 2194, 2024, doi: 10.3390/buildings14072194.
Hanratty, Niall, Mehran Khan, and Ciaran McNally. “The Role of Different Clay Types in Achieving Low-Carbon 3D Printed Concretes”. Buildings 14, no. 7 (2024): 2194. https://doi.org/10.3390/buildings14072194.