Skip to content

Enhancing Carbonation and Strength of MgO Cement Through 3D Printing (2022-03)

10.1016/j.conbuildmat.2022.126867

 Douba AlaEddin,  Badjatya Palash,  Kawashima Shiho
Journal Article - Construction and Building Materials, Vol. 328

Abstract

Magnesium oxide (MgO), which develops physical strength through carbonation, is a potential alternative to carbon intensive Portland cement. In this paper, we examined whether 3D printing could improve carbonation and compressive strength. The rheology of MgO paste was modified using mixtures of nanoclays and methylcellulose to produce cylinders with exposed open-to-air and closed (solid) infills. The results showed significant increases in strength at 3 and 28 days compared to conventionally cast specimens. This was attributed to higher exposed surface area and increase in porosity caused by high early water evaporation, both of which led to higher CO2 intake.

32 References

  1. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  2. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  3. Chen Yu, Rodríguez Claudia, Li Zhenming, Chen Boyu et al. (2020-07)
    Effect of Different Grade Levels of Calcined Clays on Fresh and Hardened Properties of Ternary-Blended Cementitious Materials for 3D Printing
  4. Douba AlaEddin, Kawashima Shiho (2021-11)
    Use of Nano-Clays and Methylcellulose to Tailor Rheology for Three-Dimensional Concrete Printing
  5. Duballet Romain, Gosselin Clément, Roux Philippe (2015-10)
    Additive Manufacturing and Multi-Objective Optimization of Graded Polystyrene-Aggregate Concrete Structures
  6. Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
    Mechanical Properties of Structures 3D Printed with Cementitious Powders
  7. Heras Murica Daniel, Genedy Moneeb, Taha Mahmoud (2020-09)
    Examining the Significance of Infill-Printing-Pattern on the Anisotropy of 3D Printed Concrete
  8. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  9. Khalil Abdullah, Wang Xiangyu, Celik Kemal (2020-02)
    3D Printable Magnesium Oxide Concrete:
    Towards Sustainable Modern Architecture
  10. Labonnote Nathalie, Rønnquist Anders, Manum Bendik, Rüther Petra (2016-09)
    Additive Construction:
    State of the Art, Challenges and Opportunities
  11. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  12. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  13. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  14. Mendoza Reales Oscar, Duda Pedro, Silva Emílio, Paiva Maria et al. (2019-06)
    Nanosilica-Particles as Structural Buildup Agents for 3D Printing with Portland Cement-Pastes
  15. Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2020-05)
    Effectiveness of the Rheometric Methods to Evaluate the Build-Up of Cementitious Mortars Used for 3D Printing
  16. Mohammed Alyaa, Saadi Nihad (2020-12)
    Ultra-High Early Strength Cementitious Grout Suitable for Additive Manufacturing Applications Fabricated by Using Graphene Oxide and Viscosity Modifying Agents
  17. Nerella Venkatesh, Mechtcherine Viktor (2019-02)
    Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D)
  18. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  19. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  20. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
    Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay
  21. Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
    Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing
  22. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  23. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  24. Qian Ye, Kawashima Shiho (2016-09)
    Use of Creep Recovery Protocol to Measure Static Yield-Stress and Structural Rebuilding of Fresh Cement-Pastes
  25. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  26. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  27. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  28. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  29. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  30. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  31. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  32. Zareiyan Babak, Khoshnevis Behrokh (2017-06)
    Inter-Layer Adhesion and Strength of Structures in Contour Crafting:
    Effects of Aggregate-Size, Extrusion-Rate, and Layer-Thickness

23 Citations

  1. Zhou Jiehang, Du Longyu, Wu Kai, Lai Jianzhong et al. (2025-11)
    Effective Factors and a Prediction Method on Extrusion Flow of 3D Printed Concrete
  2. Lim Sean, Lee Junghyun, Bawarith Nuran, Paul Suvash et al. (2025-11)
    The Efficacy of Self-Curing Agents on Enhanced Internal Curing and Accelerated Carbonation with CO2-Steam Integrated 3D Concrete Printing
  3. Maierdan Yierfan, Armistead Samuel, Seshadri Akul, Carcassi Olga et al. (2025-10)
    Locust Bean Gum–Stabilized Kaolin-Rich Earthen Composites:
    From On-Land to Underwater 3D Printing
  4. Zhong Kuangnan, Huang Kaiyun, Liu Zhichao, Wang Fazhou et al. (2025-10)
    Dual Strategies for Enhancing Carbonation Curing in 3D Printing Steel Slag Mortars:
    Material Modification and Curing Process Innovation
  5. Fahim Abdullah, Bukhari Syed, Khanzadeh Moradllo Mehdi (2025-09)
    Additive Manufacturing of Carbonatable Ternary Cementitious Systems with Cellulose Nanocrystals
  6. Ghodke Swapnil, Singh Arshdeep, Singh Bhupinder, Chowdhury Shubhankar (2025-08)
    Additively Manufactured Smart Materials and Structures in Construction and Building Applications
  7. Rajeev Pathmanathan, Kopitha Kirushnapillai, Sanjayan Jay (2025-06)
    Carbonated Water and MgO for Improved Performance of 3D Concrete Printing.
  8. Avşar Yunus, Uysal Mücteba, Akca Abdullah (2025-05)
    Improvement of 3D Printing Properties of MgO Derived Binders by CO2 Curing in Hardened State
  9. Jiang Yu, Zhang Qingxin, Tabbaa Abir, Daly Ronan (2025-03)
    The Critical Role of Time-Dependent Rheology for Improved Quality Control of 3D Printed Cementitious Structures
  10. Kopitha Kirushnapillai, Rajeev Pathmanathan, Sanjayan Jay, Elakneswaran Yogarajah (2024-12)
    CO2 Sequestration and Low-Carbon-Strategies in 3D Printed Concrete
  11. Han Xiaoyu, Yan Jiachuan, Huo Yanlin, Chen Tiefeng (2024-11)
    Effect of Carbonation-Curing-Regime on 3D Printed Concrete:
    Compressive Strength, CO2 Uptake, and Characterization
  12. Kaszyńska Maria, Skibicki Szymon (2024-11)
    Sustainable Development Approach for 3D Concrete Printing
  13. Gao Jianhao, Wang Chaofeng, Li Jiaqi, Chu S. (2024-09)
    Data-Driven Rheological-Model for 3D Printable Concrete
  14. Prihar Arjun, Gupta Shashank, Esmaeeli Hadi, Moini Mohamadreza (2024-08)
    Tough Double-Bouligand Architected Concrete Enabled by Robotic Additive Manufacturing
  15. Lim Sean, Tay Yi, Amr Issam, Fadhel Bandar et al. (2024-07)
    Carbon Sequestration with 3D Concrete Printing:
    Potentials and Challenges
  16. Zhong Kuangnan, Huang Kaiyun, Liu Zhichao, Wang Fazhou et al. (2024-07)
    CO2-Driven Additive Manufacturing of Sustainable Steel-Slag-Mortars
  17. Zhong Kuangnan, Huang Shuai, Liu Zhichao, Wang Fazhou et al. (2024-06)
    CO2-Absorbing 3D Printable Mixtures for Magnesium-Slag Valorization
  18. Maierdan Yierfan, Zhao Diandian, Choksi Pooja, Garmonina Maria et al. (2024-05)
    Rheology, 3D Printing, and Particle-Interactions of Xanthan-Gum-Clay Binder for Earth Concrete
  19. Ralston Nadia, Gupta Shashank, Moini Mohamadreza (2024-05)
    3D Printing of Architected Calcium-Silicate Binders with Enhanced and In-Situ Carbonation
  20. Wang Xiangyu, Krishnan Padmaja, Celik Kemal (2024-04)
    Enhancing Carbonation and Thermal Insulation of Reactive Magnesium Oxide Cement (RMC)-Based 3D Printable Pastes with Cenospheres
  21. Moini Mohamadreza (2024-01)
    Perspectives in Architected Infrastructure Materials
  22. Maierdan Yierfan, Armistead Samuel, Mikofsky Rebecca, Huang Qiqi et al. (2023-11)
    Rheology and 3D Printing of Alginate Bio-Stabilized Earth Concrete
  23. Pi Yilin, Lu Cong, Li Baoshan, Zhou Junhui (2023-10)
    Crack Propagation and Failure Mechanism of 3D Printing Engineered Cementitious Composites (3DP-ECC) Under Bending Loads

BibTeX
@article{doub_badj_kawa.2022.ECaSoMCT3P,
  author            = "AlaEddin Douba and Palash Badjatya and Shiho Kawashima",
  title             = "Enhancing Carbonation and Strength of MgO Cement Through 3D Printing",
  doi               = "10.1016/j.conbuildmat.2022.126867",
  year              = "2022",
  journal           = "Construction and Building Materials",
  volume            = "328",
}
Formatted Citation

A. Douba, P. Badjatya and S. Kawashima, “Enhancing Carbonation and Strength of MgO Cement Through 3D Printing”, Construction and Building Materials, vol. 328, 2022, doi: 10.1016/j.conbuildmat.2022.126867.

Douba, AlaEddin, Palash Badjatya, and Shiho Kawashima. “Enhancing Carbonation and Strength of MgO Cement Through 3D Printing”. Construction and Building Materials 328 (2022). https://doi.org/10.1016/j.conbuildmat.2022.126867.