Skip to content

Properties of Additively Manufactured Geopolymer Incorporating Mineral-Wollastonite-Micro-Fibers (2022-04)

10.1016/j.conbuildmat.2022.127282

 Bong Shin,  Nematollahi Behzad,  Xia Ming,  Ghaffar Seyed,  Pan Jinlong,  Dai Jian-Guo
Journal Article - Construction and Building Materials, Vol. 331, No. 127282

Abstract

Integration of reinforcement in the 3D concrete printing (3DCP) process is a major challenge. As a possible solution, the addition of short synthetic/metallic fibers directly to a fresh mixture before extrusion has been investigated in previous studies. However, the use of natural/inorganic microfibers such as wollastonite as reinforcement for 3DCP has received less attention. Wollastonite is substantially cheaper and more environmentally friendly than synthetic/metallic fibers. To fill this knowledge gap, this study reports a systematic approach to enhance the flexural strength of a 3D-printed geopolymer by the addition of wollastonite microfiber. The effect of different replacement levels of wollastonite (0, 5, 10, 15, 20, and 30% by weight of sand) on setting time and mechanical properties of several mixtures were evaluated to identify the optimum wollastonite content. The printing performances, rheological properties, and mechanical strengths of the optimum mixture were then evaluated and compared with the control mixture (without wollastonite). The results showed that at 10% replacement level, the static yield stress and thixotropy property of the mixture were enhanced, which is desirable for the superior printability of the mixture. In addition, the flexural strength of the mixture incorporating 10% wollastonite was superior to the control mixture, whereas the compressive strength was not changed. The use of mineral wollastonite microfibers as a low-cost and environmentally friendly reinforcement for 3DCP is experimentally established in this study.

20 References

  1. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
    Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction
  2. Bong Shin, Nematollahi Behzad, Arunothayan Arun, Xia Ming et al. (2020-07)
    Effect of Wollastonite Micro-Fiber Addition on Properties of 3D Printable ‘Just-Add-Water’ Geopolymers
  3. Bong Shin, Xia Ming, Nematollahi Behzad, Shi Caijun (2021-04)
    Ambient Temperature Cured ‘Just-Add-Water’ Geopolymer for 3D Concrete Printing Applications
  4. Chougan Mehdi, Ghaffar Seyed, Sikora Paweł, Chung Sang-Yeop et al. (2021-02)
    Investigation of Additive Incorporation on Rheological, Microstructural and Mechanical Properties of 3D Printable Alkali-Activated Materials
  5. Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2019-03)
    An Approach to Develop Printable Strain-Hardening Cementitious Composites
  6. Ghaffar Seyed, Corker Jorge, Fan Mizi (2018-05)
    Additive Manufacturing Technology and Its Implementation in Construction as an Eco-Innovative Solution
  7. Khan Mohammad, Sanchez Florence, Zhou Hongyu (2020-04)
    3D Printing of Concrete:
    Beyond Horizons
  8. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  9. Mechtcherine Viktor, Buswell Richard, Kloft Harald, Bos Freek et al. (2021-02)
    Integrating Reinforcement in Digital Fabrication with Concrete:
    A Review and Classification Framework
  10. Menna Costantino, Mata-Falcón Jaime, Bos Freek, Vantyghem Gieljan et al. (2020-04)
    Opportunities and Challenges for Structural Engineering of Digitally Fabricated Concrete
  11. Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
    Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content
  12. Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
    Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction
  13. Nematollahi Behzad, Xia Ming, Sanjayan Jay (2017-07)
    Current Progress of 3D Concrete Printing Technologies
  14. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  15. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  16. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2021-06)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete:
    Correction
  17. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  18. Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
    Digital Concrete:
    Opportunities and Challenges
  19. Xiao Jianzhuang, Zou Shuai, Ding Tao, Duan Zhenhua et al. (2021-08)
    Fiber-Reinforced Mortar with 100% Recycled Fine Aggregates:
    A Cleaner Perspective on 3D Printing
  20. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction

25 Citations

  1. Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
    Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
    A Comprehensive Review
  2. Pemas Sotirios, Baliakas Dimitrios, Pechlivani Eleftheria, Stefanidou Maria (2025-07)
    Mechanical Properties of Bio-Printed Mortars with Bio-Additives for Green and Sustainable Construction
  3. Liu Qiong, Singh Amardeep, Wang Qiming, Qifeng Lyu (2025-05)
    3D-Printed Application in Concretes
  4. Jaji Mustapha, Babafemi Adewumi, Zijl Gideon (2025-05)
    Mechanical Performance of Extrusion-Based Two-Part 3D-Printed Geopolymer Concrete:
    A Review of Advances in Laboratory and Real-Scale Construction Projects
  5. Tanyildizi Harun, Seloglu Maksut, Bakri Abdullah Mohd, Razak Rafiza et al. (2025-04)
    The Rheological and Mechanical Properties of 3D-Printed Geopolymers:
    A Review
  6. Maralapalle Vedprakash, Kumavat Hemraj, Nadaf Maheboobsab, Zende Aijaz et al. (2025-04)
    Optimizing 3D Geopolymer Concrete for Sustainable Construction:
    A Review of Material Selection, Printing Methods, and Properties
  7. Raqeb Hanan, Ghaffar Seyed (2024-12)
    3D Concrete Printing in Kuwait:
    Stakeholder Insights for Sustainable Waste Management Solutions
  8. Sakhare Vishakha, Najar Mohamed, Deshpande Sachin (2024-12)
    Printing Performance of 3D Printed Geopolymer Through Pumpability, Extrudability, Buildability Properties:
    A Review
  9. Zhao Zhihui, Cai Xianhuan, Chen Fan, Gong Yongfan et al. (2024-12)
    Effect of Wollastonite-Content on Rheology and Mechanical Properties of 3D Printed Magnesium-Potassium-Phosphate-Cement-Based Material of MgO-SiO2-K2HPO4
  10. Murali Gunasekaran, Leong Sing (2024-11)
    Waste-Driven Construction:
    A State of the Art Review on the Integration of Waste in 3D Printed Concrete in Recent Researches for Sustainable Development
  11. Barve Prasad, Bahrami Alireza, Shah Santosh (2024-07)
    A Comprehensive Review on Effects of Material-Composition, Mix-Design, and Mixing-Regimes on Rheology of 3D Printed Geopolymer Concrete
  12. Krishna R., Rehman Asif, Mishra Jyotirmoy, Saha Suman et al. (2024-06)
    Additive Manufacturing of Geopolymer Composites for Sustainable Construction:
    Critical Factors, Advancements, Challenges, and Future Directions
  13. Liu Junli, Haikola Pirjo, Fox Kate, Tran Jonathan (2024-06)
    3D Printing of Cementitious Composites with Seashell-Particles:
    Mechanical and Microstructural Analysis
  14. Oulkhir Fatima, Akhrif Iatimad, Jai Mostapha (2024-05)
    3D Concrete Printing Success:
    An Exhaustive Diagnosis and Failure-Modes-Analysis
  15. Hassan Habibelrahman, Rodriguez-Ubinas Edwin, Tamimi Adil, Trepci Esra et al. (2024-04)
    Towards Innovative and Sustainable Buildings:
    A Comprehensive Review of 3D Printing in Construction
  16. Souza Eduarda, Ribeiro Borges Paulo, Stengel Thorsten, Nematollahi Behzad et al. (2024-03)
    3D Printed Sustainable Low-Cost Materials for Construction of Affordable Social Housing in Brazil:
    Potential, Challenges, and Research Needs
  17. Warsi Syed, Panda Biranchi, Biswas Pankaj (2023-12)
    Exploring Fiber Addition Methods and Mechanical Properties of Fiber-Reinforced 3D Printed Concrete:
    A Review
  18. Imram Ramsha, Rashid Ans, Khan Shoukat, İlcan Hüseyin et al. (2023-10)
    Buildability-Analysis on Squared Profile Structure in 3D Concrete Printing
  19. Noaimat Yazeed, Chougan Mehdi, Albar Abdulrahman, Skibicki Szymon et al. (2023-10)
    Recycled Brick-Aggregates in One-Part Alkali-Activated Materials:
    Impact on 3D Printing Performance and Material-Properties
  20. Shilar Fatheali, Ganachari Sharanabasava, Patil Veerabhadragouda, Bhojaraja B. et al. (2023-08)
    A Review of 3D Printing of Geopolymer Composites for Structural and Functional Applications
  21. Jaji Mustapha, Zijl Gideon, Babafemi Adewumi (2023-08)
    Slag-Modified Fiber-Reinforced Metakaolin-Based Geopolymer for 3D Concrete Printing Application:
    Evaluating Fresh and Hardened Properties
  22. Sasikumar Athira, Balasubramanian Dhayalini, Senthil Kumaran M., Govindaraj Vishnuvarthanan (2023-05)
    Effect of Coarse Aggregate Content on the Rheological and Buildability Properties of 3D Printable Concrete
  23. Uddin Md, Mahamoudou Faharidine, Deng Boyu, Elobaid Musa Moneef et al. (2023-03)
    Prediction of Rheological Parameters of 3D Printed Polypropylene-Fiber-Reinforced Concrete by Machine Learning
  24. Noaimat Yazeed, Ghaffar Seyed, Chougan Mehdi, Kheetan Mazen (2022-12)
    A Review of 3D Printing Low-Carbon Concrete with One-Part Geopolymer:
    Engineering, Environmental and Economic Feasibility
  25. Yang Rijiao, Zhu Yi, Lan Yan, Zeng Qiang et al. (2022-10)
    Differences in Micro Grain & Fiber-Distributions Between Matrix and Inter-Layer of Cementitious Filaments Affected by Extrusion-Molding

BibTeX
@article{bong_nema_xia_ghaf.2022.PoAMGIMWMF,
  author            = "Shin Hau Bong and Behzad Nematollahi and Ming Xia and Seyed Hamidreza Ghaffar and Jinlong Pan and Jian-Guo Dai",
  title             = "Properties of Additively Manufactured Geopolymer Incorporating Mineral-Wollastonite-Micro-Fibers",
  doi               = "10.1016/j.conbuildmat.2022.127282",
  year              = "2022",
  journal           = "Construction and Building Materials",
  volume            = "331",
  pages             = "127282",
}
Formatted Citation

S. H. Bong, B. Nematollahi, M. Xia, S. H. Ghaffar, J. Pan and J.-G. Dai, “Properties of Additively Manufactured Geopolymer Incorporating Mineral-Wollastonite-Micro-Fibers”, Construction and Building Materials, vol. 331, p. 127282, 2022, doi: 10.1016/j.conbuildmat.2022.127282.

Bong, Shin Hau, Behzad Nematollahi, Ming Xia, Seyed Hamidreza Ghaffar, Jinlong Pan, and Jian-Guo Dai. “Properties of Additively Manufactured Geopolymer Incorporating Mineral-Wollastonite-Micro-Fibers”. Construction and Building Materials 331 (2022): 127282. https://doi.org/10.1016/j.conbuildmat.2022.127282.