Skip to content

Bonding Strength of Steel-Rebars Perpendicular to the Hardened 3D Printed Concrete-Layers (2022-05)

10.1016/j.conbuildmat.2022.127827

 Aramburu Amaia,  Calderon-Uriszar-Aldaca Iñigo,  Puente Iñigo
Journal Article - Construction and Building Materials, Vol. 340

Abstract

Passive rebars are inserted into interior hollow channels within a 3D-printed mortar geometry and then bonded with a wet joint of filling mortar, in order to test the bonding strength of the rebars within the mortar structure. Standardized test procedures are adapted for the test procedure. The test results revealed bonding strengths with shear stresses within an interval between 16.75 MPa and 18 MPa, dependent upon rebar diameter, and good early strength development of the bonding mortar of at least 14 MPa during the first week. No specimen failed because of debonding between the filling mortar and the 3D-printed cylinder, nor because of debonding of the cylinder and the concrete poured around its exterior.

16 References

  1. Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
    3D Printing of Reinforced Concrete Elements:
    Technology and Design Approach
  2. Asprone Domenico, Menna Costantino, Bos Freek, Salet Theo et al. (2018-06)
    Rethinking Reinforcement for Digital Fabrication with Concrete
  3. Assaad Joseph, Yassin Abdallah, Sakka Fatima, Hamzeh Farook (2020-05)
    A Modular Approach for Steel Reinforcing of 3D Printed Concrete:
    Preliminary Study
  4. Baz Bilal, Aouad Georges, Khalil Noura, Rémond Sébastien (2020-11)
    Inter-Layer Reinforcement of 3D Printed Concrete Elements
  5. Baz Bilal, Aouad Georges, Leblond Philippe, Mansouri Omar et al. (2020-05)
    Mechanical Assessment of Concrete:
    Steel Bonding in 3D Printed Elements
  6. Baz Bilal, Aouad Georges, Rémond Sébastien (2020-01)
    Effect of the Printing Method and Mortar’s Workability on Pull-Out Strength of 3D Printed Elements
  7. Claßen Martin, Ungermann Jan, Sharma Rahul (2020-05)
    Additive Manufacturing of Reinforced Concrete:
    Development of a 3D Printing Technology for Cementitious Composites with Metallic Reinforcement
  8. Freund Niklas, Mai (née Dressler) Inka, Lowke Dirk (2020-07)
    Studying the Bond Properties of Vertical Integrated Short Reinforcement in the Shotcrete 3D Printing Process
  9. Hass Lauri, Bos Freek (2020-07)
    Bending and Pull-Out Tests on a Novel Screw Type Reinforcement for Extrusion-Based 3D Printed Concrete
  10. Khoshnevis Behrokh, Hwang Dooil, Yao Ke, Yeh Zhenghao (2006-05)
    Mega-Scale Fabrication by Contour Crafting
  11. Marchment Taylor, Sanjayan Jay (2020-09)
    Bond Properties of Reinforcing Bar Penetrations in 3D Concrete Printing
  12. Marchment Taylor, Sanjayan Jay (2020-07)
    Penetration Reinforcing Method for 3D Concrete Printing
  13. Marchment Taylor, Sanjayan Jay (2021-04)
    Reinforcement Method for 3D Concrete Printing Using Paste-Coated Bar Penetrations
  14. Mechtcherine Viktor, Grafe Jasmin, Nerella Venkatesh, Spaniol Erik et al. (2018-05)
    3D Printed Steel-Reinforcement for Digital Concrete Construction:
    Manufacture, Mechanical Properties and Bond Behavior
  15. Perrot Arnaud, Jacquet Yohan, Rangeard Damien, Courteille Eric et al. (2020-03)
    Nailing of Layers:
    A Promising Way to Reinforce Concrete 3D Printing Structures
  16. Sun Xiaoyan, Gao Chao, Wang Hailong (2020-10)
    Bond-Performance Between BFRP-Bars and 3D Printed Concrete

17 Citations

  1. Liu Zhenbang, Li Mingyang, Wang Sizhe, Deng North et al. (2026-01)
    Investigation on Bond-Slip Performance of Steel Rebar Embedded in Concrete Confined by 3D Concrete Printing Formwork
  2. Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Mustafa Ali et al. (2025-12)
    Passive Determination of Anisotropic Compressive Strength of 3D Printed Concrete Using Multiple Neural Networks Enhanced with Explainable Machine Learning (XML)
  3. Wang Li, Fan Haichen, Wang Qiang, Bai Gang et al. (2025-09)
    Design Method and Force Transmission Mechanism of 3D Printed Concrete Truss Beams Reinforced with 3D Conical Reinforcement
  4. Sagyntay Mukhagali, Storch Florian, Mustafa Azamat, Plaschnick Paul et al. (2025-06)
    Automated Production of 3D Printed Сoncrete Structures with Integrated Reinforcement Mesh Based on Standard Reinforcement Bars
  5. Zhou Wen, Xu Yading, Meng Zhaozheng, Xie Jinbao et al. (2025-03)
    Filament Stitching:
    An Architected Printing Strategy to Mitigate Anisotropy in 3D-Printed Engineered Cementitious Composites
  6. Wang Qiang, Yang Wenwei, Wang Li, Bai Gang et al. (2025-03)
    Reinforcement Design and Structural Performance for the Topology Optimized 3D Printed Concrete Truss Beams
  7. Liu Qiong, Wang Qiming, Sun Chang, Li Jiawang et al. (2025-01)
    Inter-Layer Shear Strength and Bonding Strength of Sinuous 3D Printed Mortar
  8. Cai Jianguo, Wang Jingsong, Zhang Qian, Du Caixia et al. (2024-10)
    State of the Art of Mechanical Properties of 3D Printed Concrete
  9. Sun Chang, Li Jiawang, Liu Qiong, Chen Kailun et al. (2024-07)
    Compressive Performance and Damage Mechanism of Concrete Short Columns Confined by Steel-Wires-Reinforced 3DPM
  10. Aramburu Amaia, Calderon-Uriszar-Aldaca Iñigo, Puente Iñigo, Castano-Alvarez Ruben (2024-03)
    Effects of 3D Printing on the Tensile Splitting Strength of Concrete Structures
  11. Liu Huawei, Liu Chao, Zhang Yamei, Bai Guoliang (2023-11)
    Bonding Properties Between 3D Printed Coarse Aggregate Concrete and Rebar Based on Interface Structural Characteristics
  12. Liu Dawei, Zhang Zhigang, Zhang Xiaoyue, Chen Zhaohui (2023-09)
    3D Printing Concrete Structures:
    State of the Art, Challenges, and Opportunities
  13. Aramburu Amaia, Calderon-Uriszar-Aldaca Iñigo, Puente Iñigo (2023-05)
    Wet Joint Performance of 3D Printed Concrete Beam Segments Under Flexural Loading
  14. Aramburu Amaia, Calderon-Uriszar-Aldaca Iñigo, Puente Iñigo (2023-02)
    Parametric Modelling of 3D Printed Concrete Segmented Beams with Rebars Under Bending Moments
  15. Raphael Benny, Senthilnathan Shanmugaraj, Patel Abhishek, Bhat Saqib (2023-01)
    A Review of Concrete 3D Printed Structural Members
  16. Kan Deyuan, Liu Guifeng, Cao Shuang, Chen Zhengfa et al. (2022-11)
    Mechanical Properties and Pore-Structure of Multi-Walled Carbon-Nano-Tube-Reinforced Reactive Powder-Concrete for Three-Dimensional Printing Manufactured by Material-Extrusion
  17. Aramburu Amaia, Calderon-Uriszar-Aldaca Iñigo, Puente Iñigo (2022-09)
    3D Printing Effect on the Compressive Strength of Concrete Structures

BibTeX
@article{aram_cald_puen.2022.BSoSRPttH3PCL,
  author            = "Amaia Aramburu and Iñigo Calderon-Uriszar-Aldaca and Iñigo Puente",
  title             = "Bonding Strength of Steel-Rebars Perpendicular to the Hardened 3D Printed Concrete-Layers",
  doi               = "10.1016/j.conbuildmat.2022.127827",
  year              = "2022",
  journal           = "Construction and Building Materials",
  volume            = "340",
}
Formatted Citation

A. Aramburu, I. Calderon-Uriszar-Aldaca and I. Puente, “Bonding Strength of Steel-Rebars Perpendicular to the Hardened 3D Printed Concrete-Layers”, Construction and Building Materials, vol. 340, 2022, doi: 10.1016/j.conbuildmat.2022.127827.

Aramburu, Amaia, Iñigo Calderon-Uriszar-Aldaca, and Iñigo Puente. “Bonding Strength of Steel-Rebars Perpendicular to the Hardened 3D Printed Concrete-Layers”. Construction and Building Materials 340 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127827.