Skip to content

Fresh and Rheological Performances of Air-Entrained 3D Printable Mortars (2021-05)

10.3390/ma14092409

 Tarhan Yeşim,  Şahin Remzi
Journal Article - Materials, Vol. 14, Iss. 9

Abstract

The effect of air-entraining admixture (AEA) on the fresh and rheological behavior of mortars designed to be used in 3D printers was investigated. Blast furnace slag, calcined kaolin clay, polypropylene fiber, and various chemical additives were used in the mortar mixtures produced with Super White Cement (CEM I 52.5 R) and quartz sand. In addition to unit weight, air content, and compressive strength tests, in order to determine the stability of 3D printable mortar elements created by extruding layer by layer without any deformation, extrudability, buildability, and open time tests were applied. Fresh and rheological properties of 3D printable mortars were also determined. It was concluded that the addition of AEA to the mortars decreased the unit weight, viscosity, yield, and compressive strength, but increased the air content, spread diameter, initial setting time, and thixotropy of 3D printable mortar. It is recommended to develop a unique chemical admixture for 3D printable mortars, considering the active ingredients of the chemical additives that affect fresh and rheological performance of mortar such as superplasticizer, viscosity modifying, and cement hydration control.

48 References

  1. Assaad Joseph, Hamzeh Farook, Hamad Bilal (2020-05)
    Qualitative Assessment of Interfacial Bonding in 3D Printing Concrete Exposed to Frost-Attack
  2. Bao Yi, Xu Mingfeng, Soltan Daniel, Xia Tian et al. (2018-09)
    Three-Dimensional Printing Multifunctional Engineered Cementitious Composites (ECC) for Structural Elements
  3. Bos Freek, Kruger Jacques, Lucas Sandra, Zijl Gideon (2021-04)
    Juxtaposing Fresh Material-Characterisation-Methods for Buildability-Assessment of 3D Printable Cementitious Mortars
  4. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  5. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  6. Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
    Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture
  7. Craveiro Flávio, Bártolo Helena, Gale Andrew, Duarte José et al. (2017-07)
    A Design Tool for Resource-Efficient Fabrication of 3D Graded Structural Building Components Using Additive Manufacturing
  8. Das Arnesh, Song Yu, Mantellato Sara, Wangler Timothy et al. (2020-07)
    Influence of Pumping-Extrusion on the Air-Void System of 3D Printed Concrete
  9. Davtalab Omid, Kazemian Ali, Khoshnevis Behrokh (2018-01)
    Perspectives on a BIM-Integrated Software Platform for Robotic Construction through Contour Crafting
  10. Delgado Camacho Daniel, Clayton Patricia, Brien William, Seepersad Carolyn et al. (2018-02)
    Applications of Additive Manufacturing in the Construction Industry:
    A Forward-Looking Review
  11. Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
    Mechanical Properties of Structures 3D Printed with Cementitious Powders
  12. Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2019-03)
    An Approach to Develop Printable Strain-Hardening Cementitious Composites
  13. Ghaffar Seyed, Corker Jorge, Fan Mizi (2018-05)
    Additive Manufacturing Technology and Its Implementation in Construction as an Eco-Innovative Solution
  14. Hager Izabela, Golonka Anna, Putanowicz Roman (2016-08)
    3D Printing of Buildings and Building Components as the Future of Sustainable Construction?
  15. Hambach Manuel, Rutzen Matthias, Volkmer Dirk (2019-02)
    Properties of 3D-Printed Fiber-Reinforced Portland Cement-Paste
  16. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  17. Ingaglio Joseph, Fox John, Naito Clay, Bocchini Paolo (2019-02)
    Material-Characteristics of Binder-Jet 3D Printed Hydrated CSA Cement with the Addition of Fine Aggregates
  18. Jeon Kwang-Hyun, Park Min-Beom, Kang Min-Kyung, Kim Jung-Hoon (2013-11)
    Development of an Automated Freeform Construction System and Its Construction Materials
  19. Kazemian Ali, Yuan Xiao, Meier Ryan, Khoshnevis Behrokh (2019-02)
    Performance-Based Testing of Portland Cement Concrete for Construction-Scale 3D Printing
  20. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  21. Kondepudi Kala, Subramaniam Kolluru (2021-02)
    Formulation of Alkali-Activated Fly-Ash-Slag Binders for 3D Concrete Printing
  22. Labonnote Nathalie, Rønnquist Anders, Manum Bendik, Rüther Petra (2016-09)
    Additive Construction:
    State of the Art, Challenges and Opportunities
  23. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  24. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  25. Lu Bing, Qian Ye, Li Mingyang, Weng Yiwei et al. (2019-04)
    Designing Spray-Based 3D Printable Cementitious Materials with Fly-Ash-Cenosphere and Air-Entraining Agent
  26. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  27. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  28. Nair Sooraj, Panda Subhashree, Santhanam Manu, Sant Gaurav et al. (2020-05)
    A Critical Examination of the Influence of Material-Characteristics and Extruder-Geometry on 3D Printing of Cementitious Binders
  29. Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
    In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction
  30. Özalp Fatih, Yılmaz Halit (2020-03)
    Fresh and Hardened Properties of 3D High-Strength Printing Concrete and Its Recent Applications
  31. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
    Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay
  32. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2020-01)
    Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nano-Clay and Nucleation-Seeds for 3D Printing
  33. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  34. Panda Biranchi, Tay Yi, Paul Suvash, Tan Ming (2018-05)
    Current Challenges and Future Potential of 3D Concrete Printing
  35. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  36. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  37. Perkins Isaac, Skitmore Martin (2015-03)
    Three-Dimensional Printing in the Construction Industry:
    A Review
  38. Rahul Attupurathu, Santhanam Manu (2020-02)
    Evaluating the Printability of Concretes Containing Lightweight Coarse Aggregates
  39. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  40. Rahul Attupurathu, Sharma Abhishek, Santhanam Manu (2020-01)
    A Desorptivity-Based Approach for the Assessment of Phase Separation During Extrusion of Cementitious Materials
  41. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  42. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  43. Secrieru Egor, Cotardo Dario, Mechtcherine Viktor, Lohaus Ludger et al. (2018-04)
    Changes in Concrete Properties During Pumping and Formation of Lubricating Material Under Pressure
  44. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  45. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  46. Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
    A Critical Review of the Use of 3D Printing in the Construction Industry
  47. Zhang Xu, Li Mingyang, Lim Jian, Weng Yiwei et al. (2018-08)
    Large-Scale 3D Printing by a Team of Mobile Robots
  48. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete

22 Citations

  1. Baah Thomas, Kim Heejeong, Latypov Marat (2025-11)
    Multi-Objective Adaptive Experimental Approach for Optimizing 3D Concrete Printing Mixtures and Parameters Incorporating Construction and Demolition Waste for Sustainable Construction
  2. Tarhan Yeşim, Atalay Berrin (2025-09)
    Phosphogypsum and Borogypsum as Additives for Sustainable and High-Performance 3D-Printable Concrete
  3. Mani Aravindhraj, Sekar Muthu (2025-08)
    NDT Techniques for Evaluating Mechanical Properties in Green and Fiber-Reinforced 3D Printable Mixes
  4. Kurniati Eka, Kim Heejeong (2025-04)
    Enhancing the Printability of 3D Printing Limestone Calcined Clay Cement Using Hydroxyethyl Cellulose Admixture and Silica Fume
  5. Givkashi Mohammad, Moodi Faramarz, Ramezanianpour Amir (2025-02)
    Effect of Air-Entraining Agent on Hardened Properties of 3D Printed Concrete with Emphasis on Permeability and Air Void Structure
  6. Nan Bo, Qiao Youxin, Leng Junjie, Bai Yikui (2025-01)
    Advancing Structural Reinforcement in 3D Printed Concrete:
    Current Methods, Challenges, and Innovations
  7. Tarhan Yeşim, Tarhan İsmail, Şahin Remzi (2024-12)
    Comprehensive Review of Binder Matrices in 3D Printing Construction:
    Rheological Perspectives
  8. Tarhan Yeşim, Şahin Remzi (2024-12)
    The Impact of Air-Entraining on Frost-Endurance in 3D Printed Concrete:
    The Function of Printing Orientation and Curing Process
  9. Yasin Mazhar, Siddiqi Zahid, Ur Rehman Atteq, Noshin Sadaf et al. (2024-11)
    Innovative Early-Age Mechanical Properties of 3D Printable Mortar Enhanced with SBR-Latex and Kaolin
  10. Bao Ta, Yeakleang Muy, Abdelouhab Sandra, Courard Luc (2024-10)
    Testing Mortars for 3D Printing:
    Correlation with Rheological Behavior
  11. Tarhan Yeşim, Tarhan İsmail, Jacquet Yohan, Perrot Arnaud (2024-09)
    Mechanical Behavior of 3D Printed and Textile-Reinforced Eco-Friendly Composites
  12. Gao Jianhao, Wang Chaofeng, Li Jiaqi, Chu S. (2024-09)
    Data-Driven Rheological-Model for 3D Printable Concrete
  13. Givkashi Mohammad, Tohidloo Mohammad (2024-07)
    The Effect of Freeze-Thaw-Cycles and Sulfuric-Acid-Attack Separately on the Compressive Strength and Microstructure of 3D Printed Air-Entrained Concrete
  14. Tarhan Yeşim, Şahin Remzi (2023-10)
    The Physicomechanical Behavior and Microstructure of Air-Entrained 3D Printable Concrete
  15. Tarhan Yeşim, Perrot Arnaud (2023-08)
    Reinforcement of 3D Printable Earth-Based Mortar with Natural Textile-Material
  16. Kilic Ugur, Ma Ji, Baharlou Ehsan, Ozbulut Osman (2023-03)
    Effects of Viscosity-Modifying Admixture and Nano-Clay on Fresh and Rheo-Viscoelastic Properties and Printability Characteristics of Cementitious Composites
  17. Spuriņa Ella, Šinka Māris, Ziemelis Krists, Vanags Andris et al. (2022-09)
    The Effects of Air-Entraining Agent on Fresh and Hardened Properties of 3D Concrete
  18. Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
    Rheology and Printability of Portland-Cement-Based Materials:
    A Review
  19. Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
    Test-Methods for 3D Printable Concrete
  20. Saruhan Vedat, Keskinateş Muhammer, Felekoğlu Burak (2022-04)
    A Comprehensive Review on Fresh State Rheological Properties of Extrusion-Mortars Designed for 3D Printing Applications
  21. Rehman Atta, Kim Jung-Hoon (2021-07)
    3D Concrete Printing:
    A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
  22. Tarhan Yeşim, Craveiro Flávio, Bártolo Helena (2021-05)
    An Effective Solution for Reinforcing 3D Concrete Printable Composites

BibTeX
@article{tarh_sahi.2021.FaRPoAE3PM,
  author            = "Yeşim Tarhan and Remzi Şahin",
  title             = "Fresh and Rheological Performances of Air-Entrained 3D Printable Mortars",
  doi               = "10.3390/ma14092409",
  year              = "2021",
  journal           = "Materials",
  volume            = "14",
  number            = "9",
}
Formatted Citation

Y. Tarhan and R. Şahin, “Fresh and Rheological Performances of Air-Entrained 3D Printable Mortars”, Materials, vol. 14, no. 9, 2021, doi: 10.3390/ma14092409.

Tarhan, Yeşim, and Remzi Şahin. “Fresh and Rheological Performances of Air-Entrained 3D Printable Mortars”. Materials 14, no. 9 (2021). https://doi.org/10.3390/ma14092409.