Effect of Red Mud, Nano-Clay, and Natural Fiber on Fresh and Rheological Properties of Three-Dimensional Concrete Printing (2021-11)¶
, Dedenis Marie, ,
Journal Article - ACI Materials Journal, Vol. 118, Iss. 6, pp. 97-110
Abstract
Three-dimensional (3D) printing, also known as additive manufacturing, is a revolutionary technique, which recently has gained a growing interest in the field of civil engineering and the construction industry. Despite being in its infancy, 3D concrete printing is believed to reshape the future of the construction industry because it has the potential to significantly reduce both the cost and time of construction. For example, savings between 35 and 60% of the overall cost of construction can be achieved by using this technique due to the possibility of relinquishing the formwork. Moreover, this innovation would free up the architectural gesture by offering a wider possibility of shapes. However, key challenges should be addressed to make this technique commercially viable. The effect of mixture composition on the rheological properties of the printed concrete/mortar is vital and should be thoroughly investigated. This paper investigates the effect of using red mud, nanoclay, and natural fibers on the fresh and rheological properties of 3D-printed mortar. The rheological properties were evaluated using the penetrometer test, flow table test, and cylindrical slump test. The estimated yield stress values were then calculated based on the cylindrical slump test. Further, relationships between the tested parameters were established. The main findings of this study indicate that the use of an optimum dosage of a nanoclay was beneficial to attain the required cohesion, stability, and constructability of the printed mortar. The use of natural fibers reduced pulp flow by improving cohesion with a denser fiber network and reducing the cracks. With respect to red mud, it may be appropriate for printable mortar, but more testing is still required to optimize its use in a printable mixture. A printability box to define the suitability of mixtures for 3D printing was also established for these mixtures.
¶
12 References
- Bong Shin, Nematollahi Behzad, Nazari Ali, Xia Ming et al. (2019-03)
Method of Optimization for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications - Hambach Manuel, Volkmer Dirk (2017-02)
Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste - Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
Cementitious Materials for Construction-Scale 3D Printing:
Laboratory Testing of Fresh Printing Mixture - Labonnote Nathalie, Rønnquist Anders, Manum Bendik, Rüther Petra (2016-09)
Additive Construction:
State of the Art, Challenges and Opportunities - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Lim Sungwoo, Buswell Richard, Le Thanh, Wackrow Rene et al. (2011-07)
Development of a Viable Concrete Printing Process - Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
Extrusion-Based Additive Manufacturing with Cement-Based Materials:
Production Steps, Processes, and Their Underlying Physics - Panda Biranchi, Lim Jian, Tan Ming (2019-02)
Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction - Perrot Arnaud, Amziane Sofiane (2019-04)
3D Printing in Concrete:
General Considerations and Technologies - Perrot Arnaud, Jacquet Yohan, Rangeard Damien, Courteille Eric et al. (2020-03)
Nailing of Layers:
A Promising Way to Reinforce Concrete 3D Printing Structures - Perrot Arnaud, Rangeard Damien (2019-04)
3D Printing in Concrete:
Techniques for Extrusion-Casting - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
3D Printable Concrete:
Mixture-Design and Test-Methods
26 Citations
- Öztürk Ece, Ince Ceren, Borgianni Yuri, Nicolaides Demetris et al. (2025-12)
Printability, Engineering Properties and Environmental Implications of 3D-Printed Cementitious Mortars Incorporating Hydrated Lime, Tile Powder and Accelerator - Garshasbi Sajad, Mousavi Seyed, Dehestani Mehdi, Nazarpour Hadi (2025-10)
Sustainable Production of 3D Concrete Printing Using Agricultural Waste Fibers - Jamjala Siva, Thulasirangan Lakshmidevi Manivannan, Reddy K., Kafle Bidur et al. (2025-10)
A Critical Review on Synergistic Integration of Nanomaterials in 3D-Printed Concrete:
Rheology to Microstructure and Eco-Functionality - Si Wen, Carr Liam, Zia Asad, Khan Mehran et al. (2025-08)
Advancing 3D Printable Concrete with Nanoclays:
Rheological and Mechanical Insights for Construction Applications - Medeiros Fernanda, Anjos Marcos, Maia José, Dias Leonardo et al. (2025-08)
Effect of Sisal Fibers on the Behavior of 3D-Printed Cementitious Mixtures Exposed to High Temperatures - Panchal Priyanka, Choi Myoungsung (2025-07)
A Review on Effect of Natural Fibers to Mitigate CO2 Footprint and Enhance Engineering Properties of 3D Printing Concrete - Yassin Ahmed, Hafez Mohamed, Aboelhassan Mohamed (2025-04)
Experimental and Numerical Investigation on the Effect of Different Types of Synthetic Fibers on the Flexure Behavior and Mechanical Properties of 3D Cementitious Composite Printing Provided with Cement CEM II/A-P - Srinivas Dodda, Panda Biranchi, Suraneni Prannoy, Sitharam Thallak (2025-01)
Influence of Mixture-Composition and Carbonation-Curing on Properties of Sustainable 3D Printable Mortars - Sun Junbo, Wang Yufei, Yang Xin, Wang Haihong et al. (2025-01)
Red Mud Utilization in Fiber-Reinforced 3D Printed Concrete:
Mechanical Properties and Environmental Impact Analysis - Rasel Risul, Hossain Md, Zubayer Md, Zhang Chaoqun (2024-11)
Exploring the Fresh and Rheology Properties of 3D Printed Concrete with Fiber-Reinforced Composites:
A Novel Approach Using Machine Learning Techniques - Kosson Michael, Brown Lesa, Thorne Garret, Sanchez Florence (2024-11)
Influence of Internal Architecture and Ink Formulation on the Thermal Behavior of 3D Printed Cementitious Materials - Habibi Alireza, Buswell Richard, Osmani Mohamed, Aziminezhad Mohamadmahdi (2024-11)
Sustainability Principles in 3D Concrete Printing:
Analysing Trends, Classifying Strategies, and Future Directions - Warsi Syed, Panda Biranchi, Biswas Pankaj (2024-11)
Development of Ultra-Ductile Strain-Hardening 3D Printed Concrete Composite Utilizing Critical Fiber Volume and Coarse Aggregate - Varela Hugo, Barluenga Gonzalo, Sonebi Mohammed (2024-09)
Evaluation of Basalt-Fibers and Nano-Clays to Enhance Extrudability and Buildability of 3D Printing Mortars - Dias José, Brandão Filipe, Figueiredo Bruno, Cruz Paulo (2024-09)
The Potential of Natural Fiber-Reinforcement in 3D Printed Concrete:
A Review - Zhao Hongyu, Wang Yufei, Liu Xianda, Wang Xiangyu et al. (2024-08)
Review on Solid Wastes Incorporated Cementitious Material Using 3D Concrete Printing-Technology - Srinivas Dodda, Ventrapragada Durga, Panda Biranchi, Sitharam Thallak (2024-07)
A Study on the Effect of Mixture Constituents on Washout-Resistance, Mechanical, and Transport Properties in the Context of Underwater 3D Concrete Printing - Lu Yue, Xiao Jianzhuang, Li Yan (2024-03)
3D Printing Recycled Concrete Incorporating Plant-Fibers:
A Comprehensive Review - Khan Shayan, Ghazi Syed, Amjad Hassan, Imram Muhammad et al. (2023-12)
Emerging Horizons in 3D Printed Cement-Based Materials with Nano-Material-Integration:
A Review - Warsi Syed, Srinivas Dodda, Panda Biranchi, Biswas Pankaj (2023-12)
Investigating the Impact of Coarse Aggregate Dosage on the Mechanical Performance of 3D Printable Concrete - Kaushik Sandipan, Sonebi Mohammed, Amato Giuseppina, Perrot Arnaud et al. (2023-09)
Effect of Nano-Clay on the Printability of Extrusion-Based 3D Printable Mortar - Varela Hugo, Barluenga Gonzalo, Sonebi Mohammed (2023-07)
Rheology Characterization of 3D Printing Mortars with Nano-Clays and Basalt-Fibers - Srinivas Dodda, Dey Dhrutiman, Panda Biranchi, Sitharam Thallak (2022-12)
Printability, Thermal and Compressive Strength Properties of Cementitious Materials:
A Comparative Study with Silica-Fume and Limestone - Dey Dhrutiman, Srinivas Dodda, Boddepalli Uday, Panda Biranchi et al. (2022-09)
3D Printability of Ternary-Portland-Cement Mixes Containing Fly-Ash and Limestone - Abdalqader Ahmed, Sonebi Mohammed, Dedenis Marie, Amziane Sofiane et al. (2022-06)
Mechanical Performance of 3D Printed Concrete Containing Fly-Ash, Metakaolin and Nano-Clay - Roussel Nicolas, Buswell Richard, Ducoulombier Nicolas, Ivanova Irina et al. (2022-06)
Assessing the Fresh Properties of Printable Cement-Based Materials:
High-Potential Tests for Quality-Control
BibTeX
@article{sone_dede_abda_perr.2021.EoRMNCaNFoFaRPoTDCP,
author = "Mohammed Sonebi and Marie Dedenis and Ahmed Abdalqader and Arnaud Perrot",
title = "Effect of Red Mud, Nano-Clay, and Natural Fiber on Fresh and Rheological Properties of Three-Dimensional Concrete Printing",
doi = "10.14359/51733108",
year = "2021",
journal = "ACI Materials Journal",
volume = "118",
number = "6",
pages = "97--110",
}
Formatted Citation
M. Sonebi, M. Dedenis, A. Abdalqader and A. Perrot, “Effect of Red Mud, Nano-Clay, and Natural Fiber on Fresh and Rheological Properties of Three-Dimensional Concrete Printing”, ACI Materials Journal, vol. 118, no. 6, pp. 97–110, 2021, doi: 10.14359/51733108.
Sonebi, Mohammed, Marie Dedenis, Ahmed Abdalqader, and Arnaud Perrot. “Effect of Red Mud, Nano-Clay, and Natural Fiber on Fresh and Rheological Properties of Three-Dimensional Concrete Printing”. ACI Materials Journal 118, no. 6 (2021): 97–110. https://doi.org/10.14359/51733108.