Review on Sustainability in 3D Concrete Printing (2025-06)¶
Sakhare Vishakha, Khairnar Neha, Dahatonde Ulka, Mashalkar Shilpa
Journal Article - Asian Journal of Civil Engineering
Abstract
Constructions using 3D printing are supposed to have potential benefits in sustainability, increased construction productivity, resource efficiency. Having spectacular benefits in the construction era, it announces many demanding challenges in the selection of appropriate material. When agro-industrial wastes are incorporated into concrete materials, 3D printing may also have significant benefits for sustainability. This paper's primary goal is to examine the sustainability aspects considered in delivering 3D printed structured mainly from raw precursors and life cycle assessment perspective. Initial data bases collected from search engines like google scholar, science direct was further scrutinized for selecting the papers. This study reviews mix composition used for printing 3D assembly using waste material like Granulated blast furnace slag, fly ash, silica fume etc. Effectiveness of the waste materials contributing to mechanical and fresh characteristics are explored. Industrial waste mostly be dumped found to have significant impact printability properties also contributing to sustainability aspects. Nonetheless, life cycle assessment (LCA) results are used to show how using wastes in 3D printing concrete materials affects environment in comparison to using traditional materials. Study deals with three pillars of sustainability i.e., Economical, environmental and sustainability. Outcome of the paper will help the researcher to optimally choose the waste precursors to deliver quality 3D printed structure with sustainable perspective.
¶
51 References
- Adaloudis Max, Bonnin Roca Jaime (2021-05)
Sustainability Tradeoffs in the Adoption of 3D Concrete Printing in the Construction Industry - Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
Sustainable Materials for 3D Concrete Printing - Bianchi Iacopo, Volpe Stelladriana, Fiorito Francesco, Forcellese Archimede et al. (2024-01)
Life Cycle Assessment of Building Envelopes Manufactured Through Different 3D Printing Technologies - Bong Shin, Xia Ming, Nematollahi Behzad, Shi Caijun (2021-04)
Ambient Temperature Cured ‘Just-Add-Water’ Geopolymer for 3D Concrete Printing Applications - Chen Yu, He Shan, Zhang Yu, Wan Zhi et al. (2021-08)
3D Printing of Calcined-Clay-Limestone-Based Cementitious Materials - Curth Alexander, Pearl Natalie, Castro-Salazar Angelica, Mueller Caitlin et al. (2024-03)
3D Printing Earth:
Local, Circular Material Processing, Fabrication Methods, and Life Cycle Assessment - D'Haese Romain, Carpentier Olivier, Dubois Vincent, Chafei Sawsen et al. (2022-10)
3D Printable Materials Made with Industrial Byproducts:
Formulation, Fresh and Hardened Properties - Ebrahimi Mahdi, Mohseni Mohammad, Aslani Alireza, Zahedi Rahim (2022-08)
Investigation of Thermal Performance and Life Cycle Assessment of a 3D Printed Building - Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2019-03)
An Approach to Develop Printable Strain-Hardening Cementitious Composites - Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2020-05)
Mechanical Behavior of Printed Strain-Hardening Cementitious Composites - Klyuev Sergey, Klyuev Alexander, Fediuk Roman, Ageeva Marina et al. (2022-04)
Fresh and Mechanical Properties of Low-Cement Mortars for 3D Printing - Li Zhanzhao, Hojati Maryam, Wu Zhengyu, Piasente Jonathon et al. (2020-07)
Fresh and Hardened Properties of Extrusion-Based 3D Printed Cementitious Materials:
A Review - Liu Chao, Xiong Yuanliang, Chen Yuning, Jia Lutao et al. (2022-01)
Effect of Sulphoaluminate Cement on Fresh and Hardened Properties of 3D Printing Foamed Concrete - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Matos Paulo, Zat Tuani, Lima Marcelo, Neto José et al. (2023-08)
Effect of the Superplasticizer-Addition Time on the Fresh Properties of 3D Printed Limestone-Calcined-Clay-Cement (LC³) Concrete - Mengistu Girum, Nemes Rita (2024-01)
Recycling 3D Printed Concrete Waste for Normal Strength Concrete Production - Meurer Maximilian, Claßen Martin (2021-02)
Mechanical Properties of Hardened 3D Printed Concretes and Mortars:
Development of a Consistent Experimental Characterization-Strategy - Mohammad Malek, Masad Eyad, Ghamdi Sami (2020-12)
3D Concrete Printing Sustainability:
A Comparative Life Cycle Assessment of Four Construction Method Scenarios - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2021-01)
Early-Age Hydration, Rheology and Pumping Characteristics of CSA Cement-Based 3D Printable Concrete - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
Extrusion-Based Concrete 3D Printing from a Material Perspective:
A State of the Art Review - Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content - Moini Mohamadreza, Olek Jan, Zavattieri Pablo, Youngblood Jeffrey (2022-04)
Early-Age Buildability-Rheological Properties Relationship in Additively Manufactured Cement-Paste Hollow Cylinders - Muñoz Ivan, Madrid Javier, Muñiz Manuel, Uhart Maylis et al. (2021-01)
Life Cycle Assessment of Integrated Additive-Subtractive Concrete 3D Printing - Muthukrishnan Shravan, Kua Harn, Yu Ling, Chung Jacky (2020-05)
Fresh Properties of Cementitious Materials Containing Rice-Husk-Ash for Construction 3D Printing - Nerella Venkatesh, Mechtcherine Viktor (2019-02)
Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D) - Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
Durability Properties of 3D Printed Concrete - Overmeir Anne, Šavija Branko, Bos Freek, Schlangen Erik (2023-08)
3D Printable Strain-Hardening Cementitious Composites (3DP-SHCC):
Tailoring Fresh and Hardened State Properties - Özalp Fatih, Yılmaz Halit (2020-03)
Fresh and Hardened Properties of 3D High-Strength Printing Concrete and Its Recent Applications - Prasittisopin Lapyote (2024-11)
How 3D Printing Technology Makes Cities Smarter:
A Review, Thematic Analysis, and Perspectives - Prasittisopin Lapyote, Pongpaisanseree Kittisak, Jiramarootapong Patiphat, Snguanyat Chalermwut (2020-07)
Thermal- and Sound-Insulation of Large-Scale 3D Extrusion-Printing Wall-Panel - Robayo-Salazar Rafael, Gutiérrez Ruby, Villaquirán-Caicedo Mónica, Delvasto Arjona Silvio (2022-12)
3D Printing with Cementitious Materials:
Challenges and Opportunities for the Construction Sector - Sadakorn Wannapol, Prasertsuk Santirak, Prasittisopin Lapyote (2022-12)
3D Cement Printing:
DFMA Guideline of Patterned Load-Bearing Walls for Small Residential Units - Sadakorn Wannapol, Prasertsuk Santirak, Prasittisopin Lapyote (2024-06)
Improving the Structural Efficiency of Textured Three-Dimensional Concrete Printing Wall by Architectural Design - Sakhare Vishakha, Najar Mohamed, Deshpande Sachin (2024-12)
Printing Performance of 3D Printed Geopolymer Through Pumpability, Extrudability, Buildability Properties:
A Review - Shilar Fatheali, Ganachari Sharanabasava, Patil Veerabhadragouda, Bhojaraja B. et al. (2023-08)
A Review of 3D Printing of Geopolymer Composites for Structural and Functional Applications - Song Hongwei, Li Xinle (2021-05)
An Overview on the Rheology, Mechanical Properties, Durability, 3D Printing, and Microstructural Performance of Nanomaterials in Cementitious Composites - Suphunsaeng Kantawich, Prasittisopin Lapyote, Pethrung Sirichai, Pansuk Withit (2025-03)
Fire Performance Evaluation of 3D-Printed Concrete Walls:
A Combined Full-Scale and Numerical Modeling Approach - Suryanto Benny, Higgins J., Aitken M., Tambusay Asdam et al. (2023-10)
Developments in Portland Cement/GGBS Binders for 3D Printing Applications:
Material-Calibration and Structural Testing - Tinoco Matheus, Mendonça Érica, Fernandez Letízia, Caldas Lucas et al. (2022-04)
Life Cycle Assessment and Environmental Sustainability of Cementitious Materials for 3D Concrete Printing:
A Systematic Literature Review - Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials - Tuvayanond Wiput, Prasittisopin Lapyote (2023-02)
Design for Manufacture and Assembly of Digital Fabrication and Additive Manufacturing in Construction:
A Review - Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model - Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
Large-Scale 3D Printing Concrete Technology:
Current Status and Future Opportunities - Xu Nuoyan, Qian Ye, Yu Jing, Leung Christopher (2022-05)
Tensile Performance of 3D Printed Strain-Hardening Cementitious Composites Considering Material-Parameters, Nozzle-Size and Printing-Pattern - Xu Yading, Šavija Branko (2019-06)
Development of Strain-Hardening Cementitious Composite (SHCC) Reinforced with 3D Printed Polymeric Reinforcement:
Mechanical Properties - Yao Yue, Hu Mingming, Maio Francesco, Cucurachi Stefano (2019-08)
Life Cycle Assessment of 3D Printing Geopolymer Concrete:
An Ex‐Ante Study - Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
3D Printable Engineered Cementitious Composites:
Fresh and Hardened Properties - Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
Fresh Properties of a Novel 3D Printing Concrete Ink - Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete - Zhou Wen, McGee Wesley, Zhu He, Gökçe H. et al. (2022-08)
Time-Dependent Fresh Properties Characterization of 3D Printing Engineered Cementitious Composites:
On the Evaluation of Buildability - Živković Milijana, Žujović Maša, Milošević Jelena (2023-09)
Architectural 3D Printed Structures Created Using Artificial Intelligence:
A Review of Techniques and Applications
0 Citations
BibTeX
@article{sakh_khai_daha_mash.2025.RoSi3CP,
author = "Vishakha Sakhare and Neha Khairnar and Ulka Dahatonde and Shilpa Mashalkar",
title = "Review on Sustainability in 3D Concrete Printing: Focus on Waste Utilization and Life Cycle Assessment",
doi = "10.1007/s42107-025-01408-6",
year = "2025",
journal = "Asian Journal of Civil Engineering",
}
Formatted Citation
V. Sakhare, N. Khairnar, U. Dahatonde and S. Mashalkar, “Review on Sustainability in 3D Concrete Printing: Focus on Waste Utilization and Life Cycle Assessment”, Asian Journal of Civil Engineering, 2025, doi: 10.1007/s42107-025-01408-6.
Sakhare, Vishakha, Neha Khairnar, Ulka Dahatonde, and Shilpa Mashalkar. “Review on Sustainability in 3D Concrete Printing: Focus on Waste Utilization and Life Cycle Assessment”. Asian Journal of Civil Engineering, 2025. https://doi.org/10.1007/s42107-025-01408-6.