Skip to content

Magnesium Phosphate Cement for Powder-Based 3D Concrete Printing (2023-02)

Systematic Evaluation and Optimization of Printability and Printing Quality

10.1016/j.cemconcomp.2023.105000

 Ma Guowei,  Hu Tingyu, Wang Fang,  Liu Xiongfei,  Li Zhijian
Journal Article - Cement and Concrete Composites

Abstract

With the advantages of fast hardening, high early strength, excellent bonding strength and room temperature curing, magnesium phosphate cement (MPC) is highly preferable for powder-based 3D concrete printing. In this paper, a systematic approach via comprehending parametric analysis, visualizing techniques (SEM, XRD and X-Ray CT) and mechanical testing is developed to evaluate and optimize printability and printing quality of powder-based 3D MPC printing. The test printing results show that appropriately mapped proportions of ingredients will orient the specific properties towards the target objectives through navigating different combinations of proportions comprehensively. Specifically, 1,2-propylene glycol is able to significantly increase the viscosity of the binder, and Surfynol 465 can substantially reduce the surface tension of the binder. 25 wt% quartz sand can remarkably improve spreadability and surface flatness of the powder bed. In addition, the penetration and diffusion of the binder in the powder bed is effectively controlled by appropriate content of polyvinyl alcohol (PVA) due to the properties of high viscosity and good film-forming, thus remarkably improves printing accuracy. The compactness and hydration degree of the powder-based 3D printed MPC are optimized by 5 wt% PVA (MPC5) with the total porosity reduced by 2.86% compared to that of MPC0 (without PVA). High printing precision of the printed complex geological canyon river model indicates that MPC with appropriate contents of modulators, such as 1,2-propylene glycol and Surfynol 465 for binder and PVA and quartz sand for base powder, is desirable powder-based 3D printable material.

14 References

  1. Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
    Mechanical Properties of Structures 3D Printed with Cementitious Powders
  2. Gibbons Gregory, Williams Reuben, Purnell Phil, Farahi Elham (2013-07)
    3D Printing of Cement Composites
  3. Ingaglio Joseph, Fox John, Naito Clay, Bocchini Paolo (2019-02)
    Material-Characteristics of Binder-Jet 3D Printed Hydrated CSA Cement with the Addition of Fine Aggregates
  4. Lu Bing, Qian Ye, Li Mingyang, Weng Yiwei et al. (2019-04)
    Designing Spray-Based 3D Printable Cementitious Materials with Fly-Ash-Cenosphere and Air-Entraining Agent
  5. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  6. Min Kyung-Sung, Park Kwang-Min, Lee Bong-Chun, Roh Young-Sook (2021-12)
    Chloride Diffusion by Build Orientation of Cementitious Material-Based Binder-Jetting 3D Printing Mortar
  7. Na Okpin, Kim Kangmin, Lee Hyunjoo, Lee Hyunseung (2021-05)
    Printability and Setting-Time of CSA Cement with Na2SiO3 and Gypsum for Binder-Jetting 3D Printing
  8. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  9. Shakor Pshtiwan, Gowripalan Nadarajah, Rasouli Habib (2021-03)
    Experimental and Numerical Analysis of 3D Printed Cement Mortar Specimens Using Inkjet 3DP
  10. Shakor Pshtiwan, Nejadi Shami, Paul Gavin, Sanjayan Jay (2019-12)
    Dimensional Accuracy, Flowability, Wettability, and Porosity in Inkjet 3DP for Gypsum and Cement Mortar Materials
  11. Shakor Pshtiwan, Sanjayan Jay, Nazari Ali, Nejadi Shami (2017-02)
    Modified 3D Printed Powder to Cement-Based Material and Mechanical Properties of Cement Scaffold Used in 3D Printing
  12. Voney Vera, Odaglia Pietro, Brumaud Coralie, Dillenburger Benjamin et al. (2020-07)
    Geopolymer Formulation for Binder-Jet 3D Printing
  13. Xia Ming, Nematollahi Behzad, Sanjayan Jay (2018-09)
    Compressive Strength and Dimensional Accuracy of Portland Cement Mortar Made Using Powder-Based 3D Printing for Construction Applications
  14. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities

21 Citations

  1. Liu Xuelin, Kong Jiafeng, Chen Yidong, Wang Liang et al. (2025-12)
    Rheology and Printability Control of Low-Carbon 3D-Printed Cementitious Materials via Circular Use of Recycled Concrete Powder
  2. Zhou Jiehang, Du Longyu, Wu Kai, Lai Jianzhong et al. (2025-11)
    Effective Factors and a Prediction Method on Extrusion Flow of 3D Printed Concrete
  3. Wang Chaofan, Chen Bing, Wang Yong, Vo Thanh et al. (2025-08)
    Influencing Mechanism of Magnesium-to-Phosphate Ratio on the Rheology and Microstructure Development of 3D-Printed Magnesium Phosphate Cement at Early Hydration
  4. Li Nan, Deng Yongjie, Li Weihong, Li Lingyu et al. (2025-08)
    Performance of Active-Magnesia-Based Magnesium Phosphate Cement and Application of Rapid-Solidification 3D Printing Technology
  5. Wang Guihua, Zhou Jiguo, Liu Haoyun, Zhang Jianming (2025-05)
    Rheological Properties and Mechanical Durability of 3D-Printed Concrete Based on Low-Field NMR
  6. Zhong Jianjun, Lyu Libo, Deng Yongjie, Ma Haiyan et al. (2025-01)
    An Evaluation-Method for the Printability of Magnesium-Phosphate-Cement Concrete for Integrated Mixing-Stirring-Extrusion Rapid 3D Printing
  7. Lyu Qifeng, Wang Yalun, Chen Dongjian, Liu Shiyuan et al. (2025-01)
    Energy Storage Properties and Mechanical Strengths of 3D Printed Porous Concrete Structural Supercapacitors Reinforced by Electrodes Made of Carbon-Black-Coated Ni Foam
  8. Liu Junxing, Li Peiqi, Piao Taiyan, Im Sumin et al. (2024-12)
    High-Alumina Cementitious Materials for Binder-Jetting 3D Printing:
    Exploring Suitable Mixing-Ratio and Curing-Solution for Improving Mechanical Properties and Hydration-Reaction
  9. Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
    Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
    Materials, Engineered Properties and Techniques for Additive Manufacturing
  10. Habibi Alireza, Buswell Richard, Osmani Mohamed, Aziminezhad Mohamadmahdi (2024-11)
    Sustainability Principles in 3D Concrete Printing:
    Analysing Trends, Classifying Strategies, and Future Directions
  11. Shivendra Bandoorvaragerahalli, Sharath Chandra Sathvik, Singh Atul, Kumar Rakesh et al. (2024-09)
    A Path Towards SDGs:
    Investigation of the Challenges in Adopting 3D Concrete Printing in India
  12. Padilla-Encinas Pilar, Fernández Raúl, Cuevas Jaime, Marieta Cristina et al. (2024-09)
    Low-Carbon Footprint Magnesium-Phosphate-Cement for 3D Concrete Printing
  13. Ding Yao, Liu Jiepeng, Ou Xingjian, Nishiwaki Tomoya et al. (2024-08)
    3D Printing Hybrid-Fiber-Reinforced Engineered Cementitious Composites:
    Feasibility in Long-Open-Time Applications
  14. Ye Junhong, Zhuang Zicheng, Teng Fei, Yu Jie et al. (2024-07)
    Comparative Environmental-Assessment of 3D Concrete Printing with Engineered Cementitious Composites
  15. Zaid Osama, Ouni Mohamed (2024-04)
    Advancements in 3D Printing of Cementitious Materials:
    A Review of Mineral Additives, Properties, and Systematic Developments
  16. Tiwari Adarsh, Pratapa Phanisri, Santhanam Manu (2024-03)
    Lattice Concrete:
    3D Printed Periodic Cellular Structures Through Selective Cement-Hydration
  17. Liu Xiongfei, Wang Nan, Zhang Yi, Ma Guowei (2024-02)
    Optimization of Printing Precision and Mechanical Property for Powder-Based 3D Printed Magnesium Phosphate Cement Using Fly-Ash
  18. Pi Yilin, Lu Cong, Yao Yiming, Li Baoshan (2024-01)
    A Rheological-Based Printability-Assessment Method for 3D Printing Engineered Cementitious Composites Considering Fiber-Dispersion
  19. Pi Yilin, Lu Cong, Li Baoshan, Zhou Junhui (2023-10)
    Crack Propagation and Failure Mechanism of 3D Printing Engineered Cementitious Composites (3DP-ECC) Under Bending Loads
  20. Lyu Qifeng, Dai Pengfei, Zong Meirong, Zhu Pinghua et al. (2023-10)
    Plant-Germination Ability and Mechanical Strength of 3D Printed Vegetation Concrete Bound with Cement and Soil
  21. Wang Chaofan, Chen Bing, Vo Thanh, Rezania Mohammad (2023-07)
    Mechanical Anisotropy, Rheology and Carbon Footprint of 3D Printable Concrete:
    A Review

BibTeX
@article{ma_hu_wang_liu.2023.MPCfPB3CP,
  author            = "Guowei Ma and Tingyu Hu and Fang Wang and Xiongfei Liu and Zhijian Li",
  title             = "Magnesium Phosphate Cement for Powder-Based 3D Concrete Printing: Systematic Evaluation and Optimization of Printability and Printing Quality",
  doi               = "10.1016/j.cemconcomp.2023.105000",
  year              = "2023",
  journal           = "Cement and Concrete Composites",
}
Formatted Citation

G. Ma, T. Hu, F. Wang, X. Liu and Z. Li, “Magnesium Phosphate Cement for Powder-Based 3D Concrete Printing: Systematic Evaluation and Optimization of Printability and Printing Quality”, Cement and Concrete Composites, 2023, doi: 10.1016/j.cemconcomp.2023.105000.

Ma, Guowei, Tingyu Hu, Fang Wang, Xiongfei Liu, and Zhijian Li. “Magnesium Phosphate Cement for Powder-Based 3D Concrete Printing: Systematic Evaluation and Optimization of Printability and Printing Quality”. Cement and Concrete Composites, 2023. https://doi.org/10.1016/j.cemconcomp.2023.105000.