Skip to content

Mechanical Strengths and Optical Properties of Translucent Concrete Manufactured by Mortar-Extrusion 3D Printing with Polymethyl-Methacrylate Fibers (2023-10)

10.1016/j.compositesb.2023.111079

 Lyu Qifeng, Dai Pengfei, Chen Anguo
Journal Article - Composites Part B: Engineering, Vol. 268, No. 111079

Abstract

Manufacturing conventional translucent concrete consumes lots of labors and formworks. To solve this problem, novel translucent concrete was proposed and manufactured in this work by mortar-extrusion 3D printing, which used polymethyl methacrylate (PMMA) fibers to transmit light and also reinforce the printed concrete. The printing procedures started by extruding one-layer mortar first, and then the fibers were placed on top the printed mortar. Afterward, repeated the above two steps multiple times. The printability, mechanical strengths, optical properties and micro characteristics of the printed translucent concrete were tested. Results showed the fibers increased the buildability and anisotropy of the printed specimens. Specifically, in comparison with the printed specimens without fibers, the flexural strengths of the printed translucent concrete with fibers increased when loading perpendicular to the fiber orientation, whereas those in other loading directions decreased. The fibers also increased the compressive strengths of the printed specimens when loading perpendicular to the fiber orientation, but decreased those in loading parallel to the fiber orientation. Light transmittance of the fibers in the printed translucent concrete was also studied. Results showed reflection coefficients of concrete, fiber diameters, light incident angles influenced the light transmittance. Generally, the light transmittance increased with the reflection coefficients and fiber diameters but decreased with the light incident angles. And the incident angles, which were affected by the printing quality, influenced the light transmittance more than other two factors did. The results and methods in this work can help to increase the efficiency of manufacturing translucent concrete.

39 References

  1. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  2. Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
    Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers
  3. Cao Xiangpeng, Yu Shiheng, Wu Shuoli, Cui Hongzhi (2022-11)
    Experimental Study of Hybrid Manufacture of Printing and Cast-in-Process to Reinforce 3D Printed Concrete
  4. Cesaretti Giovanni, Dini Enrico, Kestelier Xavier, Colla Valentina et al. (2013-08)
    Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology
  5. Chen Yidong, Zhang Yunsheng, Pang Bo, Liu Zhiyong et al. (2021-05)
    Extrusion-Based 3D Printing Concrete with Coarse Aggregate:
    Printability and Direction-Dependent Mechanical Performance
  6. Furet Benoît, Poullain Philippe, Garnier Sébastien (2019-04)
    3D Printing for Construction Based on a Complex Wall of Polymer-Foam and Concrete
  7. Hao Lucen, Xiao Jianzhuang, Sun Jingting, Xia Bing et al. (2022-06)
    Thermal Conductivity of 3D Printed Concrete With Recycled Fine Aggregate Composite Phase-Change-Materials
  8. Hou Shaodan, Xiao Jianzhuang, Duan Zhenhua, Ma Guowei (2021-10)
    Fresh Properties of 3D Printed Mortar with Recycled Powder
  9. Ji Guangchao, Xiao Jianzhuang, Zhi Peng, Wu Yuching et al. (2022-02)
    Effects of Extrusion-Parameters on Properties of 3D Printing Concrete with Coarse Aggregates
  10. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  11. Khoshnevis Behrokh, Dutton Rosanne (1998-01)
    Innovative Rapid Prototyping Process Makes Large-Sized, Smooth-Surfaced Complex Shapes in a Wide Variety of Materials
  12. Khoshnevis Behrokh, Russell Richard, Kwon Hongkyu, Bukkapatnam Satish (2001-09)
    Crafting Large Prototypes
  13. Kreiger Eric, Kreiger Megan, Case Michael (2019-04)
    Development of the Construction Processes for Reinforced Additively Constructed Concrete
  14. Li Zhijian, Wang Li, Ma Guowei (2020-01)
    Mechanical Improvement of Continuous Steel-Micro-Cable-Reinforced Geopolymer Composites for 3D Printing Subjected to Different Loading Conditions
  15. Liu Chao, Chen Yuning, Xiong Yuanliang, Jia Lutao et al. (2022-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Buildability of 3D Printing Foam-Concrete:
    From Water State and Flocculation Point of View
  16. Liu Huawei, Liu Chao, Bai Guoliang, Wu Yiwen et al. (2022-04)
    Influence of Pore-Defects on the Hardened Properties of 3D Printed Concrete with Coarse Aggregate
  17. Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete
  18. Liu Chao, Xiong Yuanliang, Chen Yuning, Jia Lutao et al. (2022-01)
    Effect of Sulphoaluminate Cement on Fresh and Hardened Properties of 3D Printing Foamed Concrete
  19. Liu Miao, Zhang Qiyun, Tan Zhendong, Wang Li et al. (2021-01)
    Investigation of Steel-Wire-Mesh-Reinforcement Method for 3D Concrete Printing
  20. Lowke Dirk, Dini Enrico, Perrot Arnaud, Weger Daniel et al. (2018-07)
    Particle-Bed 3D Printing in Concrete Construction:
    Possibilities and Challenges
  21. Lyu Qifeng, Dai Pengfei, Chen Anguo (2023-05)
    Sandwich-Structured Porous Concrete Manufactured by Mortar-Extrusion and Aggregate-Bed 3D Printing
  22. Ma Guowei, A Ruhan, Xie Panpan, Pan Zhu et al. (2022-01)
    3D Printable Aerogel-Incorporated Concrete:
    Anisotropy Influence on Physical, Mechanical, and Thermal Insulation Properties
  23. Ma Guowei, Li Zhijian, Wang Li, Bai Gang (2018-10)
    Micro-Cable-Reinforced Geopolymer Composite for Extrusion-Based 3D Printing
  24. Marais Hannelie, Christen Heidi, Cho Seung, Villiers Wibke et al. (2021-03)
    Computational Assessment of Thermal Performance of 3D Printed Concrete Wall Structures with Cavities
  25. Marchment Taylor, Sanjayan Jay (2019-10)
    Mesh Reinforcing Method for 3D Concrete Printing
  26. Pasupathy Kirubajiny, Ramakrishnan Sayanthan, Sanjayan Jay (2022-07)
    Enhancing the Properties of Foam-Concrete 3D Printing Using Porous Aggregates
  27. Pegna Joseph (1997-02)
    Exploratory Investigation of Solid Freeform Construction
  28. Peng Yiming, Unluer Cise (2022-12)
    Development of Alternative Cementitious Binders for 3D Printing Applications:
    A Critical Review of Progress, Advantages and Challenges
  29. Perrot Arnaud, Jacquet Yohan, Rangeard Damien, Courteille Eric et al. (2020-03)
    Nailing of Layers:
    A Promising Way to Reinforce Concrete 3D Printing Structures
  30. Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
    Steel-Fiber-Reinforced 3D Printed Concrete:
    Influence of Fiber Sizes on Mechanical Performance
  31. Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
    Design of a 3D Printed Concrete Bridge by Testing
  32. Singh Amardeep, Liu Qiong, Xiao Jianzhuang, Lyu Qifeng (2022-02)
    Mechanical and Macrostructural Properties of 3D Printed Concrete Dosed with Steel-Fibers under Different Loading-Direction
  33. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  34. Wang Zhibin, Jia Lutao, Deng Zhicong, Zhang Chao et al. (2022-08)
    Bond Behavior Between Steel-Bars and 3D Printed Concrete:
    Effect of Concrete Rheological Property, Steel-Bar Diameter and Paste-Coating
  35. Wang Xianggang, Jia Lutao, Jia Zijian, Zhang Chao et al. (2022-06)
    Optimization of 3D Printing Concrete with Coarse Aggregate via Proper Mix-Design and Printing-Process
  36. Wang Li, Ma Guowei, Liu Tianhao, Buswell Richard et al. (2021-07)
    Inter-Layer Reinforcement of 3D Printed Concrete by the In-Process Deposition of U-Nails
  37. Xiao Jianzhuang, Lv Zhenyuan, Duan Zhenhua, Hou Shaodan (2022-03)
    Study on Preparation and Mechanical Properties of 3D Printed Concrete with Different Aggregate-Combinations
  38. Yu Shiwei, Du Hongjian, Sanjayan Jay (2020-07)
    Aggregate-Bed 3D Concrete Printing with Cement-Paste Binder
  39. Yu Shiwei, Sanjayan Jay, Du Hongjian (2022-07)
    Effects of Cement Mortar Characteristics on Aggregate-Bed 3D Concrete Printing

12 Citations

  1. Motiani Ronak, Sylvain Saha, Dalal Sejal, Vora Jay et al. (2025-08)
    Innovative Reinforcement Techniques for 3D-Printed Concrete:
    The Impact of Shape Memory Alloys on Flexural Strength and Crack Mitigation
  2. Yang Rijiao, Xu Chengji, Fang Sen, Li Xinze et al. (2025-07)
    Mechanistic Insights into Microstructural Changes Caused by Stapling in Extrusion-Based 3D Printed Concrete (3DPC)
  3. Dai Pengfei, Luo Zhenhua, Wang Yalun, Mbabazi Justin et al. (2025-06)
    Waste Plastic Fiber Reinforced Cementitious Cavity Structures Manufactured by Mortar Extrusion 3D Printing
  4. Yang Shutong, Chen Zhengyuan, Lan Tian, Yang Tiange (2025-05)
    Quantitative Evaluation for Fracture Properties of 3D Printed Ultra-High-Performance Concrete Loaded in Different Directions
  5. Rudziewicz Magdalena, Hutyra Adam, Maroszek Marcin, Korniejenko Kinga et al. (2025-04)
    3D-Printed Lightweight Foamed Concrete with Dispersed Reinforcement
  6. Lyu Qifeng, Wang Yalun, Chen Dongjian, Liu Shiyuan et al. (2025-01)
    Energy Storage Properties and Mechanical Strengths of 3D Printed Porous Concrete Structural Supercapacitors Reinforced by Electrodes Made of Carbon-Black-Coated Ni Foam
  7. Shivendra Bandoorvaragerahalli, Sharath Chandra Sathvik, Singh Atul, Kumar Rakesh et al. (2024-09)
    A Path Towards SDGs:
    Investigation of the Challenges in Adopting 3D Concrete Printing in India
  8. Liu Chao, Zhang Zedi, Jia Zijian, Cao Ruilin et al. (2024-07)
    Quantitative Characterization of Bubble-Stability of Foam-Concrete Throughout Extrusion-Process:
    From Yield-Stress , Viscosity and Surface Tension Point of View
  9. Lyu Qifeng, Wang Yalun, Dai Pengfei (2024-05)
    Multilayered Plant-Growing Concrete Manufactured by Aggregate-Bed 3D Concrete Printing
  10. Chen Anguo, Dai Pengfei, Lyu Qifeng (2024-05)
    Effect of Alkalized Straw-Fibers on the Properties of Three Dimensional Printed Cementitious Composite
  11. Dai Pengfei, Lyu Qifeng, Zong Meirong, Zhu Pinghua (2024-01)
    Effect of Waste-Plastic-Fibers on the Printability and Mechanical Properties of 3D Printed Cement Mortar
  12. Lucen Hao, Long Li, Shipeng Zhang, Huanghua Zhang et al. (2023-12)
    The Synergistic Effect of Greenhouse Gas CO2 and Silica-Fume on the Properties of 3D Printed Mortar

BibTeX
@article{lyu_dai_chen.2024.MSaOPoTCMbME3PwPMF,
  author            = "Qifeng Lyu and Pengfei Dai and Anguo Chen",
  title             = "Mechanical Strengths and Optical Properties of Translucent Concrete Manufactured by Mortar-Extrusion 3D Printing with Polymethyl-Methacrylate Fibers",
  doi               = "10.1016/j.compositesb.2023.111079",
  year              = "2024",
  journal           = "Composites Part B: Engineering",
  volume            = "268",
  pages             = "111079",
}
Formatted Citation

Q. Lyu, P. Dai and A. Chen, “Mechanical Strengths and Optical Properties of Translucent Concrete Manufactured by Mortar-Extrusion 3D Printing with Polymethyl-Methacrylate Fibers”, Composites Part B: Engineering, vol. 268, p. 111079, 2024, doi: 10.1016/j.compositesb.2023.111079.

Lyu, Qifeng, Pengfei Dai, and Anguo Chen. “Mechanical Strengths and Optical Properties of Translucent Concrete Manufactured by Mortar-Extrusion 3D Printing with Polymethyl-Methacrylate Fibers”. Composites Part B: Engineering 268 (2024): 111079. https://doi.org/10.1016/j.compositesb.2023.111079.