Skip to content

Foundation Piles (2021-05)

A New Feature for Concrete 3D Printers

10.3390/ma14102545

 Hoffmann Marcin,  Żarkiewicz Krzysztof,  Zieliński Adam,  Skibicki Szymon,  Marchewka Łukasz
Journal Article - Materials, Vol. 14, Iss. 10

Abstract

Foundation piles that are made by concrete 3D printers constitute a new alternative way of founding buildings constructed using incremental technology. We are currently observing very rapid development of incremental technology for the construction industry. The systems that are used for 3D printing with the application of construction materials make it possible to form permanent formwork for strip foundations, construct load-bearing walls and partition walls, and prefabricate elements, such as stairs, lintels, and ceilings. 3D printing systems do not offer soil reinforcement by making piles. The paper presents the possibility of making concrete foundation piles in laboratory conditions using a concrete 3D printer. The paper shows the tools and procedure for pile pumping. An experiment for measuring pile bearing capacity is described and an example of a pile deployment model under a foundation is described. The results of the tests and analytical calculations have shown that the displacement piles demonstrate less settlement when compared to the analysed shallow foundation. The authors indicate that it is possible to replace the shallow foundation with a series of piles combined with a printed wall without locally widening it. This type of foundation can be used for the foundation of low-rise buildings, such as detached houses. Estimated calculations have shown that the possibility of making foundation piles by a 3D printer will reduce the cost of making foundations by shortening the time of execution of works and reducing the consumption of construction materials.

42 References

  1. Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
    3D Printing of Reinforced Concrete Elements:
    Technology and Design Approach
  2. Ayres Phil, Silva Wilson, Nicholas Paul, Andersen Thomas et al. (2018-09)
    SCRIM:
    Sparse Concrete Reinforcement in Meshworks
  3. Benamara Abdeslam, Pierre Alexandre, Kaci Abdelhak, Mélinge Yannick (2020-07)
    3D Printing of a Cement-Based Mortar in a Complex Fluid Suspension:
    Analytical Modeling and Experimental Tests
  4. Borg Costanzi Christopher, Ahmed Zeeshan, Schipper Roel, Bos Freek et al. (2018-07)
    3D Printing Concrete on Temporary Surfaces:
    The Design and Fabrication of a Concrete Shell Structure
  5. Brun Francis, Gaspar Florindo, Mateus Artur, Vitorino João et al. (2020-07)
    Experimental Study on 3D Printing of Concrete with Overhangs
  6. Buswell Richard, Silva Wilson, Bos Freek, Schipper Roel et al. (2020-05)
    A Process Classification Framework for Defining and Describing Digital Fabrication with Concrete
  7. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  8. Carneau Paul, Mesnil Romain, Roussel Nicolas, Baverel Olivier (2020-04)
    Additive Manufacturing of Cantilever:
    From Masonry to Concrete 3D Printing
  9. Cesaretti Giovanni, Dini Enrico, Kestelier Xavier, Colla Valentina et al. (2013-08)
    Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology
  10. Chen Yu, Li Zhenming, Figueiredo Stefan, Çopuroğlu Oğuzhan et al. (2019-04)
    Limestone and Calcined-Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing:
    A Fundamental Study of Extrudability and Early-Age Strength Development
  11. Dörfler Kathrin, Hack Norman, Sandy Timothy, Giftthaler Markus et al. (2019-09)
    Mobile Robotic Fabrication Beyond Factory Conditions:
    Case Study Mesh Mould Wall of the DFAB HOUSE
  12. Duballet Romain, Baverel Olivier, Dirrenberger Justin (2017-08)
    Classification of Building Systems for Concrete 3D Printing
  13. Gibbons Gregory, Williams Reuben, Purnell Phil, Farahi Elham (2013-07)
    3D Printing of Cement Composites
  14. Hack Norman, Kloft Harald (2020-07)
    Shotcrete 3D Printing Technology for the Fabrication of Slender Fully Reinforced Freeform Concrete Elements with High Surface Quality:
    A Real-Scale Demonstrator
  15. Hack Norman, Mai (née Dressler) Inka, Brohmann Leon, Gantner Stefan et al. (2020-03)
    Injection 3D Concrete Printing (I3DCP):
    Basic Principles and Case Studies
  16. Hoffmann Marcin, Skibicki Szymon, Pankratow Paweł, Zieliński Adam et al. (2020-04)
    Automation in the Construction of a 3D Printed Concrete Wall with the Use of a Lintel Gripper
  17. Jagoda Jeneé, Diggs-McGee Brandy, Kreiger Megan, Schuldt Steven (2020-04)
    The Viability and Simplicity of 3D Printed Construction:
    A Military Case Study
  18. Kaszyńska Maria, Skibicki Szymon, Hoffmann Marcin (2020-12)
    3D Concrete Printing for Sustainable Construction
  19. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  20. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  21. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  22. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  23. Lim Jian, Weng Yiwei, Pham Quang-Cuong (2019-10)
    3D Printing of Curved Concrete Surfaces Using Adaptable Membrane Formwork
  24. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  25. Malaeb Zeina, Sakka Fatima, Hamzeh Farook (2019-02)
    3D Concrete Printing:
    Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups
  26. Matthäus Carla, Back Daniel, Weger Daniel, Kränkel Thomas et al. (2020-07)
    Effect of Cement-Type and Limestone-Powder-Content on Extrudability of Lightweight Concrete
  27. Nerella Venkatesh, Mechtcherine Viktor (2019-02)
    Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D)
  28. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  29. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  30. Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
    Design of a 3D Printed Concrete Bridge by Testing
  31. Shakor Pshtiwan, Nejadi Shami, Paul Gavin (2019-05)
    A Study into the Effect of Different Nozzles Shapes and Fiber-Reinforcement in 3D Printed Mortar
  32. Shakor Pshtiwan, Nejadi Shami, Sutjipto Sheila, Paul Gavin et al. (2020-01)
    Effects of Deposition-Velocity in the Presence-Absence of E6-Glass-Fiber on Extrusion-Based 3D Printed Mortar
  33. Shakor Pshtiwan, Renneberg Jarred, Nejadi Shami, Paul Gavin (2017-07)
    Optimization of Different Concrete Mix Designs for 3D Printing by Utilizing 6DOF Industrial Robot
  34. Skibicki Szymon, Kaszyńska Maria, Wahib Nawid, Techman Mateusz et al. (2020-07)
    Properties of Composite Modified with Limestone-Powder for 3D Concrete Printing
  35. Suiker Akke (2018-01)
    Mechanical Performance of Wall Structures in 3D Printing Processes:
    Theory, Design Tools and Experiments
  36. Tao Yaxin, Lesage Karel, Tittelboom Kim, Yuan Yong et al. (2020-07)
    Effect of Limestone-Powder Substitution on Fresh and Hardened Properties of 3D Printable Mortar
  37. Tay Yi, Li Mingyang, Tan Ming (2019-04)
    Effect of Printing Parameters in 3D Concrete Printing:
    Printing Region and Support Structures
  38. Wang Yu, Li Shuaishuai, Qin Tian, Yu Ying et al. (2020-07)
    Concrete 3D Printing:
    System Development, Process Planning and Experimental Results
  39. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  40. Wolfs Robert, Suiker Akke (2019-06)
    Structural Failure During Extrusion-Based 3D Printing Processes
  41. Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
    A Critical Review of the Use of 3D Printing in the Construction Industry
  42. Xu Weiguo, Gao Yuan, Sun Chenwei, Wang Zhi (2020-09)
    Fabrication and Application of 3D Printed Concrete Structural Components in the Boshan Pedestrian Bridge Project

9 Citations

  1. Wang Qiang, Yang Wenwei, Wang Li, Bai Gang et al. (2025-03)
    Reinforcement Design and Structural Performance for the Topology Optimized 3D Printed Concrete Truss Beams
  2. Kaszyńska Maria, Skibicki Szymon (2024-11)
    Sustainable Development Approach for 3D Concrete Printing
  3. Skibicki Szymon, Dvořák Richard, Pazdera Luboš, Topolář Libor et al. (2024-11)
    Anisotropic Mechanical Properties of 3D Printed Mortar Determined by Standard Flexural and Compression-Test and Acoustic Emission
  4. Chougan Mehdi, Skibicki Szymon, Noaimat Yazeed, Federowicz Karol et al. (2024-09)
    Comparative Analysis of Ternary Blended Cement with Clay and Engineering-Brick-Aggregate for High-Performance 3D Printing
  5. Skibicki Szymon, Szewczyk Piotr, Majewska Julia, Sibera Daniel et al. (2024-03)
    The Effect of Inter-Layer Adhesion on Stress-Distribution in 3D Printed Beam Elements
  6. Olczyk Norbert, Skibicki Szymon, Gierszewska Natalia (2023-08)
    3D Printed Mortar with High Alumina-Cement as Alternative Solution for Standard Materials Used for 3D Printing
  7. Besklubova Svetlana, Tan Bing, Zhong Ray, Spicek Nikola (2023-04)
    Logistic-Cost-Analysis for 3D Printing Construction Projects Using a Multi-Stage Network-Based Approach
  8. Cruz Gil, Dizon John, Farzadnia Nima, Zhou Hongyu et al. (2023-04)
    Performance, Applications, and Sustainability of 3D Printed Cement and Other Geomaterials
  9. Waqar Ahsan, Othman Idris, Pomares Juan (2023-02)
    Impact of 3D Printing on the Overall Project Success of Residential Construction Projects Using Structural Equation Modelling

BibTeX
@article{hoff_zark_ziel_skib.2021.FP,
  author            = "Marcin Hoffmann and Krzysztof Żarkiewicz and Adam Zieliński and Szymon Skibicki and Łukasz Marchewka",
  title             = "Foundation Piles: A New Feature for Concrete 3D Printers",
  doi               = "10.3390/ma14102545",
  year              = "2021",
  journal           = "Materials",
  volume            = "14",
  number            = "10",
}
Formatted Citation

M. Hoffmann, K. Żarkiewicz, A. Zieliński, S. Skibicki and Ł. Marchewka, “Foundation Piles: A New Feature for Concrete 3D Printers”, Materials, vol. 14, no. 10, 2021, doi: 10.3390/ma14102545.

Hoffmann, Marcin, Krzysztof Żarkiewicz, Adam Zieliński, Szymon Skibicki, and Łukasz Marchewka. “Foundation Piles: A New Feature for Concrete 3D Printers”. Materials 14, no. 10 (2021). https://doi.org/10.3390/ma14102545.