Revolutionizing 3D Concrete Printing (2024-03)¶
Geng Songyuan, Mei Liu, , Luo Qilong, Xiong Chen,
Journal Article - Journal of Building Engineering, Vol. 88, No. 109127
Abstract
In this paper, a general theoretical framework based on the random forest (RF) algorithm used for predicting the 3D printing concrete rheological properties and printability (3DPCRP) is proposed for the first time, which can avoid the subjective empirical dependence of earlier methods to control the stability of concrete printing. Specifically, the developed prediction models are categorized into two major types, namely rheological properties and printability prediction models. For the rheological properties prediction models, the input parameters include ordinary portland cement (OPC), sulfate aluminate cement (SAC), silica fume (SF), fly ash (FA), sand (S), maximum sand particle size (MAXSS), thixotropic agent (TA), early strength agent (ESA), superplasticizer/binder (SP/B), and water/binder (W/B). The printability prediction models take input parameters such as resting time (RT), DYS, SYS, PV, printing nozzle (PN), extrusion speed (ES), printing speed (PS), printing layer height (LH), and printing layer width (LW). The results of the statistical check index evaluation and shapley additive explanations (SHAP) analysis show that they all have high R2 (0.84–0.99) and low remaining statistical errors. This proves that the models developed in the study can successfully predict 3DPCRP. They can assist researchers in reliably and efficiently predicting the printability of concrete, thereby improving the likelihood of successful printing, print quality, and printing process stability.
¶
29 References
- Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture - Chen Yu, Jansen Koen, Zhang Hongzhi, Rodríguez Claudia et al. (2020-07)
Effect of Printing-Parameters on Inter-Layer Bond Strength of 3D Printed Limestone-Calcined-Clay-Based Cementitious Materials:
An Experimental and Numerical Study - Chen Yu, Li Zhenming, Figueiredo Stefan, Çopuroğlu Oğuzhan et al. (2019-04)
Limestone and Calcined-Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing:
A Fundamental Study of Extrudability and Early-Age Strength Development - Chen Mingxu, Li Laibo, Wang Jiaao, Huang Yongbo et al. (2019-10)
Rheological Parameters and Building Time of 3D Printing Sulphoaluminate-Cement-Paste Modified by Retarder and Diatomite - Chen Mingxu, Yang Lei, Zheng Yan, Huang Yongbo et al. (2020-04)
Yield-Stress and Thixotropy-Control of 3D Printed Calcium-Sulfoaluminate Cement Composites with Metakaolin Related to Structural Build-Up - Cui Hongzhi, Yu Shiheng, Cao Xiangpeng, Yang Haibin (2022-03)
Evaluation of Printability and Thermal Properties of 3D Printed Concrete Mixed with Phase-Change-Materials - Geng Songyuan, Luo Qiling, Liu Kun, Li Yunchao et al. (2023-02)
Research Status and Prospect of Machine Learning in Construction 3D Printing - Huang Xin, Yang Weihao, Song Fangnian, Zou Jiuqun (2022-04)
Study on the Mechanical Properties of 3D Printing Concrete Layers and the Mechanism of Influence of Printing Parameters - Izadgoshasb Hamed, Kandiri Amirreza, Shakor Pshtiwan, Laghi Vittoria et al. (2021-11)
Predicting Compressive Strength of 3D Printed Mortar in Structural Members Using Machine Learning - Jeong Hoseong, Han Sun-Jin, Choi Seung-Ho, Lee Yoon et al. (2019-02)
Rheological Property Criteria for Buildable 3D Printing Concrete - Jones Scott, Bentz Dale, Martys Nicos, George William et al. (2018-09)
Rheological Control of 3D Printable Cement-Paste and Mortars - Ketel Sabrina, Falzone Gabriel, Wang Bu, Washburn Newell et al. (2018-04)
A Printability Index for Linking Slurry Rheology to the Geometrical Attributes of 3D Printed Components - Khan Mohd (2020-04)
Mix Suitable for Concrete 3D Printing:
A Review - Lin Jia, Wu Xiong, Yang Wen, Zhao Ri et al. (2018-02)
The Influence of Fine Aggregates on the 3D Printing Performance - Liu Chao, Chen Yuning, Xiong Yuanliang, Jia Lutao et al. (2022-06)
Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Buildability of 3D Printing Foam-Concrete:
From Water State and Flocculation Point of View - Liu Chao, Chen Yuning, Zhang Zedi, Niu Geng et al. (2022-10)
Study of the Influence of Sand on Rheological Properties, Bubble Features and Buildability of Fresh Foamed Concrete for 3D Printing - Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete - Liu Chao, Xiong Yuanliang, Chen Yuning, Jia Lutao et al. (2022-01)
Effect of Sulphoaluminate Cement on Fresh and Hardened Properties of 3D Printing Foamed Concrete - Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing - Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2020-05)
Effectiveness of the Rheometric Methods to Evaluate the Build-Up of Cementitious Mortars Used for 3D Printing - Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2022-04)
3D Printing of Cement-Based Materials with Adapted Buildability - Qian Ye, Schutter Geert (2018-06)
Enhancing Thixotropy of Fresh Cement-Pastes with Nano-Clay in Presence of Polycarboxylate-Ether Superplasticizer (PCE) - Schutter Geert, Feys Dimitri (2016-11)
Pumping of Fresh Concrete:
Insights and Challenges - Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
3D Printing Trends in Building and Construction Industry:
A Review - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Wang Li, Ma Hui, Li Zhijian, Ma Guowei et al. (2021-07)
Cementitious Composites Blending with High Belite-Sulfoaluminate and Medium-Heat Portland Cements for Large-Scale 3D Printing - Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
A Critical Review of the Use of 3D Printing in the Construction Industry - Yu Shiwei, Sanjayan Jay, Du Hongjian (2022-07)
Effects of Cement Mortar Characteristics on Aggregate-Bed 3D Concrete Printing - Zhu Binrong, Nematollahi Behzad, Pan Jinlong, Zhang Yang et al. (2021-04)
3D Concrete Printing of Permanent Formwork for Concrete Column Construction
6 Citations
- Gil-Lopez Tomas, Amirfiroozkoohi Alireza, Valiente López María, Verdu-Vazquez Maria (2026-01)
The Impact of 3D Printing on Mortar Strength and Flexibility:
A Comparative Analysis of Conventional and Additive Manufacturing Techniques - Albostami Asad, Mohammad Malek, Ismael Bashar, Hamd Rwayda (2025-10)
Optimized Strength Predictions for 3D Printed Fiber-Reinforced Concrete:
Machine Learning-Driven Insights - Geng Songyuan, Cheng Boyuan, Long Wujian, Luo Qiling et al. (2025-05)
Co-Driven Physics and Machine Learning for Intelligent Control in High-Precision 3D Concrete Printing - Kaya Ebru, Ciza Baraka, Yalçınkaya Çağlar, Felekoğlu Burak et al. (2025-05)
A Comparative Study on the Effectiveness of Fly Ash and Blast Furnace Slag as Partial Cement Substitution in 3D Printable Concrete - Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
Materials, Engineered Properties and Techniques for Additive Manufacturing - Shivendra Bandoorvaragerahalli, Sharath Chandra Sathvik, Singh Atul, Kumar Rakesh et al. (2024-09)
A Path Towards SDGs:
Investigation of the Challenges in Adopting 3D Concrete Printing in India
BibTeX
@article{geng_mei_chen_luo.2024.R3CP,
author = "Songyuan Geng and Liu Mei and Boyuan Cheng and Qilong Luo and Chen Xiong and Wujian Long",
title = "Revolutionizing 3D Concrete Printing: Leveraging Random-Forest-Model for Precise Printability and Rheological Prediction",
doi = "10.1016/j.jobe.2024.109127",
year = "2024",
journal = "Journal of Building Engineering",
volume = "88",
pages = "109127",
}
Formatted Citation
S. Geng, L. Mei, B. Cheng, Q. Luo, C. Xiong and W. Long, “Revolutionizing 3D Concrete Printing: Leveraging Random-Forest-Model for Precise Printability and Rheological Prediction”, Journal of Building Engineering, vol. 88, p. 109127, 2024, doi: 10.1016/j.jobe.2024.109127.
Geng, Songyuan, Liu Mei, Boyuan Cheng, Qilong Luo, Chen Xiong, and Wujian Long. “Revolutionizing 3D Concrete Printing: Leveraging Random-Forest-Model for Precise Printability and Rheological Prediction”. Journal of Building Engineering 88 (2024): 109127. https://doi.org/10.1016/j.jobe.2024.109127.