Skip to content

Nonlinear Predictive Modeling of Building Rates Incorporating Filament Compression Deformations in 3D Printed Geopolymer Concrete (2025-03)

10.1007/s11709-025-1155-x

Chen Wei,  Pan Jinlong,  Zhu Binrong, Han Jinsheng,  Zhang Yamei, Qian Yuandi, Yu Qian
Journal Article - Frontiers of Structural and Civil Engineering

Abstract

3D printed concrete undergoes compressive deformation when printed fresh, often overlooked by traditional methods, impacting buildability prediction accuracy. In this paper, the buildability prediction model is modified by incorporating the Mohr–Coulomb damage criterion and focusing on the compressive deformation during the printing process. The prediction model combines the following key components: 1) the utilization of bilinear stress–time loading curves to simulate nonlinear stress–time loading curves during the actual printing process; 2) conducting uniaxial unconfined compression tests on cylindrical fresh specimens with different aspect ratios (ranging from 0.25 to 2) to extract the stress–strain response of the material; 3) the refinement of material parameters (including elastic modulus and plastic yield stress) and their variations with aspect ratio derived from the uniaxial unconfined tests. The material experimentation results indicate that the green strength exponentially decreases with increasing aspect ratio, while Young’s modulus exhibits a linear increase with the same parameter. Experimental comparisons were made during hollow drum printing tests using two different printing materials against the Mohr–Coulomb buildability prediction model. The results from these experiments demonstrate the improved accuracy of the new model in predicting failure heights (with relative error rates of 5.4% and 10.5%).

34 References

  1. Bos Freek, Kruger Jacques, Lucas Sandra, Zijl Gideon (2021-04)
    Juxtaposing Fresh Material-Characterisation-Methods for Buildability-Assessment of 3D Printable Cementitious Mortars
  2. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  3. Casagrande Lorenzo, Esposito Laura, Menna Costantino, Asprone Domenico et al. (2020-02)
    Effect of Testing Procedures on Buildability Properties of 3D Printable Concrete
  4. Chen Yuning, Liu Chao, Cao Ruilin, Chen Chun et al. (2022-02)
    Systematical Investigation of Rheological Performance Regarding 3D Printing Process for Alkali-Activated Materials:
    Effect of Precursor Nature
  5. Chen Yu, Rodríguez Claudia, Li Zhenming, Chen Boyu et al. (2020-07)
    Effect of Different Grade Levels of Calcined Clays on Fresh and Hardened Properties of Ternary-Blended Cementitious Materials for 3D Printing
  6. Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
    Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages
  7. Hou Shaodan, Xiao Jianzhuang, Duan Zhenhua, Ma Guowei (2021-10)
    Fresh Properties of 3D Printed Mortar with Recycled Powder
  8. Ivanova Irina, Ivaniuk Egor, Bisetti Sameercharan, Nerella Venkatesh et al. (2022-03)
    Comparison Between Methods for Indirect Assessment of Buildability in Fresh 3D Printed Mortar and Concrete
  9. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
    Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing
  10. Jayathilakage Roshan, Sanjayan Jay, Rajeev Pathmanathan (2019-01)
    Direct-Shear-Test for the Assessment of Rheological Parameters of Concrete for 3D Printing Applications
  11. Khalil Noura, Aouad Georges, Cheikh Khadija, Rémond Sébastien (2017-09)
    Use of Calcium-Sulfoaluminate-Cements for Setting-Control of 3D Printing Mortars
  12. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    3D Concrete Printing:
    A Lower-Bound Analytical Model for Buildability-Performance-Quantification
  13. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete
  14. Kurt Sibel, Atalay Yiğit, Aydın Ozan, Avcıoğlu Berrak et al. (2020-07)
    Design of Energy-Efficient White Portland Cement Mortars for Digital Fabrication
  15. Labonnote Nathalie, Rønnquist Anders, Manum Bendik, Rüther Petra (2016-09)
    Additive Construction:
    State of the Art, Challenges and Opportunities
  16. Li Zhanzhao, Hojati Maryam, Wu Zhengyu, Piasente Jonathon et al. (2020-07)
    Fresh and Hardened Properties of Extrusion-Based 3D Printed Cementitious Materials:
    A Review
  17. Li Zhijian, Wang Li, Ma Guowei (2018-05)
    Method for the Enhancement of Buildability and Bending-Resistance of 3D Printable Tailing Mortar
  18. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  19. Menna Costantino, Mata-Falcón Jaime, Bos Freek, Vantyghem Gieljan et al. (2020-04)
    Opportunities and Challenges for Structural Engineering of Digitally Fabricated Concrete
  20. Nerella Venkatesh, Beigh Mirza, Fataei Shirin, Mechtcherine Viktor (2018-11)
    Strain-Based Approach for Measuring Structural Build-Up of Cement-Pastes in the Context of Digital Construction
  21. Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
    Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing
  22. Panda Biranchi, Lim Jian, Tan Ming (2019-02)
    Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction
  23. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
    Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay
  24. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  25. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  26. Roussel Nicolas, Bessaies-Bey Hela, Kawashima Shiho, Marchon Delphine et al. (2019-08)
    Recent Advances on Yield-Stress and Elasticity of Fresh Cement-Based Materials
  27. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  28. Tripathi Avinaya, Nair Sooraj, Neithalath Narayanan (2022-01)
    A Comprehensive Analysis of Buildability of 3D Printed Concrete and the Use of Bi-Linear Stress-Strain Criterion-Based Failure Curves Towards Their Prediction
  29. Voigt Thomas, Malonn Tim, Shah Surendra (2005-10)
    Green and Early-Age Compressive Strength of Extruded Cement Mortar Monitored with Compression Tests and Ultrasonic Techniques
  30. Wang Xianggang, Jia Lutao, Jia Zijian, Zhang Chao et al. (2022-06)
    Optimization of 3D Printing Concrete with Coarse Aggregate via Proper Mix-Design and Printing-Process
  31. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  32. Wolfs Robert, Bos Freek, Salet Theo (2019-06)
    Triaxial Compression Testing on Early-Age Concrete for Numerical Analysis of 3D Concrete Printing
  33. Yu Qian, Zhu Binrong, Li Xuesen, Meng Lingqi et al. (2023-04)
    Investigation of the Rheological and Mechanical Properties of 3D Printed Eco-Friendly Concrete with Steel-Slag
  34. Zhang Chao, Jia Zijian, Wang Xianggang, Jia Lutao et al. (2022-05)
    A Two-Phase Design-Strategy Based on the Composite of Mortar and Coarse Aggregate for 3D Printable Concrete with Coarse Aggregate

0 Citations

BibTeX
@article{chen_pan_zhu_han.2025.NPMoBRIFCDi3PGC,
  author            = "Wei Chen and Jinlong Pan and Binrong Zhu and Jinsheng Han and Yamei Zhang and Yuandi Qian and Qian Yu",
  title             = "Nonlinear Predictive Modeling of Building Rates Incorporating Filament Compression Deformations in 3D Printed Geopolymer Concrete",
  doi               = "10.1007/s11709-025-1155-x",
  year              = "2025",
  journal           = "Frontiers of Structural and Civil Engineering",
}
Formatted Citation

W. Chen, “Nonlinear Predictive Modeling of Building Rates Incorporating Filament Compression Deformations in 3D Printed Geopolymer Concrete”, Frontiers of Structural and Civil Engineering, 2025, doi: 10.1007/s11709-025-1155-x.

Chen, Wei, Jinlong Pan, Binrong Zhu, Jinsheng Han, Yamei Zhang, Yuandi Qian, and Qian Yu. “Nonlinear Predictive Modeling of Building Rates Incorporating Filament Compression Deformations in 3D Printed Geopolymer Concrete”. Frontiers of Structural and Civil Engineering, 2025. https://doi.org/10.1007/s11709-025-1155-x.