Developing Mix Proportions for Class C Fly-Ash-Based Alkali-Activated 3D Printed Concrete Mixtures (2021-09)¶
, , ,
Journal Article - Transportation Research Record: Journal of the Transportation Research Board, Vol. 2676, Iss. 2, pp. 197-212
Abstract
This study investigated the use of class C fly ash (FA) as a precursor for alkali-activated mortar (AAM) for 3D-printed concrete (3DPC). AAMs with different water-to-FA (W/FA), alkaline activator-to-FA (Alk/FA), and sodium silicate-to-sodium hydroxide (SS/SH) ratios were examined to develop mixtures that can be tailored for different structural applications of 3DPC. The fresh properties, including extrudability and buildability, were evaluated through the open time (OT) and immediate deformation tests, respectively. Different cycle times (CTs) were applied to achieve a strain limit state necessary to maintain the printed shape. The strength of AAMs in different directions at different CTs was examined. Scanning electron microscopy (SEM) was carried out on AAM specimens having different CTs for a better understanding of the bond area. OTs ranging from 2.5 min to 31 min and axial strains ranging from 0.17% to 11.2% were achieved depending on the proportions of the AAMs and CT, which offers flexibility in optimizing the speed of printing and strength of concrete for different projects. The 3DPC specimens displayed anisotropic behavior compared with full-height specimens, where the compressive strength of full-height specimens was higher by 0.2% to 18% and 0.9% to 28% than 3DPC specimens when tested parallel and normal to the printing directions, respectively. SEM images and line scan indicated an approximately even intensity of the element concentration at the interfacial zones of AAMs having short CTs, which explained the relatively high compressive strength of those specimens. For AAMs having long CTs, there was a significant change in the intensity of the element concentration at the interfacial bond zone, and voids were observed resulting in low compressive strength of those specimens.
¶
30 References
- Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders - Bong Shin, Nematollahi Behzad, Nazari Ali, Xia Ming et al. (2018-09)
Fresh and Hardened Properties of 3D Printable Geopolymer Cured in Ambient Temperature - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
Mechanical Properties of Structures 3D Printed with Cementitious Powders - Hager Izabela, Golonka Anna, Putanowicz Roman (2016-08)
3D Printing of Buildings and Building Components as the Future of Sustainable Construction? - Kashani Alireza, Ngo Tuan (2017-07)
Optimization of Mixture-Properties for 3D Printing of Geopolymer Concrete - Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
Cementitious Materials for Construction-Scale 3D Printing:
Laboratory Testing of Fresh Printing Mixture - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Li Zhijian, Wang Li, Ma Guowei (2018-05)
Method for the Enhancement of Buildability and Bending-Resistance of 3D Printable Tailing Mortar - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Malaeb Zeina, Sakka Fatima, Hamzeh Farook (2019-02)
3D Concrete Printing:
Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups - Marchment Taylor, Xia Ming, Dodd Elise, Sanjayan Jay et al. (2017-07)
Effect of Delay-Time on the Mechanical Properties of Extrusion-Based 3D Printed Concrete - Mechtcherine Viktor, Nerella Venkatesh, Kasten Knut (2013-12)
Testing Pumpability of Concrete Using Sliding-Pipe Rheometer - Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction - Nerella Venkatesh, Mechtcherine Viktor (2019-02)
Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D) - Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
Additive Manufacturing (3D Printing):
A Review of Materials, Methods, Applications and Challenges - Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
Additive Manufacturing of Geopolymer for Sustainable Built Environment - Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Panda Biranchi, Tan Ming (2018-03)
Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing - Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing - Papachristoforou Michail, Mitsopoulos Vasilios, Stefanidou Maria (2018-10)
Evaluation of Workability Parameters in 3D Printing Concrete - Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction - Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
Mechanical Characterization of 3D Printable Concrete - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Tay Yi, Ting Guan, Qian Ye, Panda Biranchi et al. (2018-07)
Time-Gap-Effect on Bond Strength of 3D Printed Concrete - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
Fresh Properties of a Novel 3D Printing Concrete Ink
10 Citations
- Maroszek Marcin, Rudziewicz Magdalena, Hebda Marek (2025-09)
Recycled Components in 3D Concrete Printing Mixes:
A Review - Abudawaba Fareh, Gomaa Eslam, Gheni Ahmed, Feys Dimitri et al. (2025-03)
Evaluation of Fresh Properties of High Calcium Content Fly Ash-Based Alkali-Activated 3D-Printed Mortar - Abudawaba Fareh, Gomaa Eslam, Gheni Ahmed, Gawady Mohamed (2024-08)
Exploration of the Open-Time and Compressive Strength of Alkali-Activated Mixtures for 3D Printed Concrete - Li Haodao, Wei Jingjie, Khayat Kamal (2024-06)
3D Printing of Fiber-Reinforced Calcined Clay-Limestone-Based Cementitious Materials:
From Mixture Design to Printability Evaluation - Gu Yucun, Zheng Shuyi, Ma Hongyan, Long Wujian et al. (2024-05)
Effect of Absorption Kinetics of Superabsorbent Polymers on Printability and Inter-Layer Bond of 3D Printing Concrete - Souza Eduarda, Ribeiro Borges Paulo, Stengel Thorsten, Nematollahi Behzad et al. (2024-03)
3D Printed Sustainable Low-Cost Materials for Construction of Affordable Social Housing in Brazil:
Potential, Challenges, and Research Needs - Fasihi Ali, Libre Nicolas (2024-01)
From Pumping to Deposition:
A Comprehensive Review of Test-Methods for Characterizing Concrete-Printability - Zhu Lingli, Yao Jie, Zhao Yu, Ruan Wenqiang et al. (2023-09)
Printability and Early Mechanical Properties of Material-Composition Modified 3D Printing Engineered Cementitious Composites Based on the Response-Surface-Methodology - Mousavi Seyed, Dehestani Mehdi (2023-07)
On the Possibility of Using Waste-Disposable-Gloves as Recycled Fibers in Sustainable 3D Concrete Printing Using Different Additives - Mousavi Seyed, Dehestani Mehdi (2022-08)
Influence of Latex and Vinyl Disposable Gloves as Recycled Fibers in 3D Printing Sustainable Mortars
BibTeX
@article{abud_goma_ghen_gawa.2022.DMPfCCFABAA3PCM,
author = "Fareh Abudawaba and Eslam Gomaa and Ahmed A. Gheni and Mohamed El Gawady",
title = "Developing Mix Proportions for Class C Fly-Ash-Based Alkali-Activated 3D Printed Concrete Mixtures",
doi = "10.1177/03611981211039167",
year = "2022",
journal = "Transportation Research Record: Journal of the Transportation Research Board",
volume = "2676",
number = "2",
pages = "197--212",
}
Formatted Citation
F. Abudawaba, E. Gomaa, A. A. Gheni and M. E. Gawady, “Developing Mix Proportions for Class C Fly-Ash-Based Alkali-Activated 3D Printed Concrete Mixtures”, Transportation Research Record: Journal of the Transportation Research Board, vol. 2676, no. 2, pp. 197–212, 2022, doi: 10.1177/03611981211039167.
Abudawaba, Fareh, Eslam Gomaa, Ahmed A. Gheni, and Mohamed El Gawady. “Developing Mix Proportions for Class C Fly-Ash-Based Alkali-Activated 3D Printed Concrete Mixtures”. Transportation Research Record: Journal of the Transportation Research Board 2676, no. 2 (2022): 197–212. https://doi.org/10.1177/03611981211039167.