Numerical Simulation of Three Dimensional Concrete Printing Based on a Unified Fluid and Solid Mechanics Formulation (2023-11)¶
Reinold Janis, Daadouch Koussay,
Journal Article - Frontiers of Structural and Civil Engineering
Abstract
Deformation control constitutes one of the main technological challenges in three dimensional (3D) concrete printing, and it presents a challenge that must be addressed to achieve a precise and reliable construction process. Model-based information of the expected deformations and stresses is required to optimize the construction process in association with the specific properties of the concrete mix. In this work, a novel thermodynamically consistent finite strain constitutive model for fresh and early-age 3D-printable concrete is proposed. The model is then used to simulate the 3D concrete printing process to assess layer shapes, deformations, forces acting on substrate layers and prognoses of possible structural collapse during the layer-by-layer buildup. The constitutive formulation is based on a multiplicative split of the deformation gradient into elastic, aging and viscoplastic parts, in combination with a hyperelastic potential and considering evolving material properties to account for structural buildup or aging. One advantage of this model is the stress-update-scheme, which is similar to that of small strain plasticity and therefore enables an efficient integration with existing material routines. The constitutive model uses the particle finite element method, which serves as the simulation framework, allowing for modeling of the evolving free surfaces during the extrusion process. Computational analyses of three printed layers are used to create deformation plots, which can then be used to control the deformations during 3D concrete printing. This study offers further investigations, on the structural level, focusing on the potential structural collapse of a 3D printed concrete wall. The capability of the proposed model to simulate 3D concrete printing processes across the scales—from a few printed layers to the scale of the whole printed structure—in a unified fashion with one constitutive formulation, is demonstrated.
¶
36 References
- Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
Additive Manufacturing of Concrete in Construction:
Potentials and Challenges of 3D Concrete Printing - Carneau Paul, Mesnil Romain, Baverel Olivier, Roussel Nicolas (2022-03)
Layer Pressing in Concrete Extrusion-Based 3D Printing:
Experiments and Analysis - Chang Ze, Liang Minfei, Xu Yading, Schlangen Erik et al. (2022-08)
3D Concrete Printing:
Lattice Modeling of Structural Failure considering Damage and Deformed Geometry - Chang Ze, Zhang Hongzhi, Liang Minfei, Schlangen Erik et al. (2022-07)
Numerical Simulation of Elastic Buckling in 3D Concrete Printing Using the Lattice-Model with Geometric Non-Linearity - Comminal Raphaël, Silva Wilson, Andersen Thomas, Stang Henrik et al. (2020-10)
Modelling of 3D Concrete Printing Based on Computational Fluid Dynamics - Esposito Laura, Casagrande Lorenzo, Menna Costantino, Asprone Domenico et al. (2021-10)
Early-Age Creep Behavior of 3D Printable Mortars:
Experimental Characterisation and Analytical Modelling - He Lewei, Chow Wai, Li Hua (2020-06)
Effects of Inter-Layer Notch and Shear Stress on Inter-Layer Strength of 3D Printed Cement-Paste - Heever Marchant, Bester Frederick, Kruger Jacques, Zijl Gideon (2021-07)
Mechanical Characterisation for Numerical Simulation of Extrusion-Based 3D Concrete Printing - Khoshnevis Behrokh (2003-11)
Automated Construction by Contour Crafting:
Related Robotics and Information Technologies - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
3D Concrete Printing:
A Lower-Bound Analytical Model for Buildability-Performance-Quantification - Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
Developments in Construction-Scale Additive Manufacturing Processes - Liu Zhixin, Li Mingyang, Tay Yi, Weng Yiwei et al. (2020-04)
Rotation-Nozzle and Numerical Simulation of Mass-Distribution at Corners in 3D Cementitious Material-Printing - Liu Zhixin, Li Mingyang, Weng Yiwei, Qian Ye et al. (2020-03)
Modelling- and Parameter-Optimization for Filament-Deformation in 3D Cementitious Material-Printing Using Support-Vector-Machine - Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
Extrusion-Based Additive Manufacturing with Cement-Based Materials:
Production Steps, Processes, and Their Underlying Physics - Mechtcherine Viktor, Nerella Venkatesh (2018-02)
3D Printing with Concrete:
State-of-the-Art, Trends, Challenges - Menna Costantino, Mata-Falcón Jaime, Bos Freek, Vantyghem Gieljan et al. (2020-04)
Opportunities and Challenges for Structural Engineering of Digitally Fabricated Concrete - Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2020-08)
Plastic Shrinkage Cracking in 3D Printed Concrete - Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content - Mollah Md., Comminal Raphaël, Serdeczny Marcin, Šeta Berin et al. (2023-05)
Computational Analysis of Yield-Stress-Buildup and Stability of Deposited Layers in Material-Extrusion Additive Manufacturing - Nedjar Boumediene (2021-07)
On a Geometrically Non-Linear Incremental Formulation for the Modeling of 3D Concrete Printing - Nedjar Boumediene (2021-09)
Incremental Viscoelasticity at Finite Strains for the Modelling of 3D Concrete Printing - Pan Tinghong, Guo Rongxin, Jiang Yaqing, Ji Xuping (2022-07)
How Do the Contact Surface Forces Affect the Inter-Layer Bond Strength of 3D Printed Mortar? - Pan Tinghong, Teng Huaijin, Liao Hengcheng, Jiang Yaqing et al. (2022-03)
Effect of Shaping Plate Apparatus on Mechanical Properties of 3D Printed Cement-Based Materials:
Experimental and Numerical Studies - Reinold Janis, Meschke Günther (2022-06)
Algorithm for Aging Materials with Evolving Stiffness Based on a Multiplicative Split - Reinold Janis, Nerella Venkatesh, Mechtcherine Viktor, Meschke Günther (2022-02)
Extrusion-Process-Simulation and Layer-Shape-Prediction During 3D Concrete Printing Using the Particle-Finite-Element-Method - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Roussel Nicolas, Spangenberg Jon, Wallevik Jon, Wolfs Robert (2020-06)
Numerical Simulations of Concrete Processing:
From Standard Formative Casting to Additive Manufacturing - Sayegh Sameh, Romdhane Lotfi, Manjikian Solair (2022-03)
A Critical Review of 3D Printing in Construction:
Benefits, Challenges, and Risks - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Spangenberg Jon, Silva Wilson, Comminal Raphaël, Mollah Md. et al. (2021-10)
Numerical Simulation of Multi-Layer 3D Concrete Printing - Suiker Akke (2018-01)
Mechanical Performance of Wall Structures in 3D Printing Processes:
Theory, Design Tools and Experiments - Vantyghem Gieljan, Ooms Ticho, Corte Wouter (2020-11)
VoxelPrint:
A Grasshopper Plug-In for Voxel-Based Numerical Simulation of Concrete Printing - Wolfs Robert, Bos Freek, Salet Theo (2018-02)
Early-Age Mechanical Behaviour of 3D Printed Concrete:
Numerical Modelling and Experimental Testing - Wolfs Robert, Bos Freek, Salet Theo (2019-06)
Triaxial Compression Testing on Early-Age Concrete for Numerical Analysis of 3D Concrete Printing - Wolfs Robert, Salet Theo, Roussel Nicolas (2021-10)
Filament-Geometry-Control in Extrusion-Based Additive Manufacturing of Concrete:
The Good, the Bad and the Ugly - Wolfs Robert, Suiker Akke (2019-06)
Structural Failure During Extrusion-Based 3D Printing Processes
5 Citations
- Ding Tao, Lian Hongqian (2026-01)
Buildability Analysis of 3D Concrete Printing:
A Finite Element Model Incorporating Segment-by-Segment Activation, Nozzle Constraint, and Extrusion Pressure - Yu Hao, Zhang Weiwei, Liew Jia, Yin Binbin et al. (2025-11)
Simulating Material Flow and Extrusion Dynamics in 3D Concrete Printing - Mawas Karam, Maboudi Mehdi, Gerke Markus (2025-09)
A Review on Geometry and Surface Inspection in 3D Concrete Printing - An Dong, Rahman Mahfuzur, Zhang Y., Yang Chunhui (2025-05)
Effects of Key 3D Concrete Printing Process Parameters on Layer Shape:
Experimental Study and Smooth Particle Hydrodynamics Modelling - Daadouch Koussay, Reinold Janis, Meschke Günther (2024-09)
Numerical Simulation of 3D Concrete Printing:
From the Layer- to the Structural-Scale
BibTeX
@article{rein_daad_mesc.2024.NSoTDCPBoaUFaSMF,
author = "Janis Michel Reinold and Koussay Daadouch and Günther Meschke",
title = "Numerical Simulation of Three Dimensional Concrete Printing Based on a Unified Fluid and Solid Mechanics Formulation",
doi = "10.1007/s11709-024-1082-2",
year = "2024",
journal = "Frontiers of Structural and Civil Engineering",
}
Formatted Citation
J. M. Reinold, K. Daadouch and G. Meschke, “Numerical Simulation of Three Dimensional Concrete Printing Based on a Unified Fluid and Solid Mechanics Formulation”, Frontiers of Structural and Civil Engineering, 2024, doi: 10.1007/s11709-024-1082-2.
Reinold, Janis Michel, Koussay Daadouch, and Günther Meschke. “Numerical Simulation of Three Dimensional Concrete Printing Based on a Unified Fluid and Solid Mechanics Formulation”. Frontiers of Structural and Civil Engineering, 2024. https://doi.org/10.1007/s11709-024-1082-2.