Inter-Layer Strength of 3D Printed Mortar Reinforced by Postinstalled Reinforcement (2021-11)¶
, , Lee Jungwoo, Joh Changbin,
Journal Article - Materials, Vol. 14, Iss. 21
Abstract
This work was designed to evaluate the interlayer strength of 3D-printed mortar with postinstalled interlayer reinforcement. Two methods of postinstalled interlayer reinforcement were considered according to the amount of overlapping. The first method did not include overlapping of the interlayer reinforcement, while the second method included overlap lengths of 20 and 40 mm. Additionally, two different curing conditions were considered: air-curing conditions and water-curing conditions. The compressive, splitting tensile, and flexural tensile strengths of 3D-printed mortar specimens with different reinforcement methods and curing conditions were investigated under three loading directions. The three loading directions were defined based on the three planes of the printed specimens. The compressive, splitting tensile, and flexural tensile strengths were dependent on the loading directions. In particular, the splitting and flexural tensile strengths decreased considerably when tensile stresses acted on the interlayers of the 3D-printed mortar specimens. However, when longitudinal interlayer reinforcement penetrated the printed layers, the flexural tensile strength or interlayer bonding strength of the printed specimens increased significantly at the interlayers. In addition, mortar specimens reinforced with overlap lengths of 20 and 40 mm were investigated in this study. The flexural tensile strength or interlayer bonding strength of 3D-printed mortar decreased after treatment under air-curing conditions because the interlayers of the printed mortar formed more pores under these conditions and were more vulnerable under loading. Finally, the findings of this study suggested that interlayer reinforcement is a potential method for improving the interlayer bonding strength of 3D-printed mortar.
¶
31 References
- Baz Bilal, Aouad Georges, Khalil Noura, Rémond Sébastien (2020-11)
Inter-Layer Reinforcement of 3D Printed Concrete Elements - Baz Bilal, Aouad Georges, Leblond Philippe, Mansouri Omar et al. (2020-05)
Mechanical Assessment of Concrete:
Steel Bonding in 3D Printed Elements - Bester Frederick, Heever Marchant, Kruger Jacques, Cho Seung et al. (2020-07)
Steel-Fiber Links in 3D Printed Concrete - Bos Freek, Ahmed Zeeshan, Wolfs Robert, Salet Theo (2017-06)
3D Printing Concrete with Reinforcement - Chen Yu, Li Zhenming, Figueiredo Stefan, Çopuroğlu Oğuzhan et al. (2019-04)
Limestone and Calcined-Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing:
A Fundamental Study of Extrudability and Early-Age Strength Development - Chu Shaohua, Li Leo, Kwan Albert (2020-09)
Development of Extrudable High-Strength Fiber-Reinforced Concrete Incorporating Nano-Calcium-Carbonate - Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages - Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers - Hambach Manuel, Volkmer Dirk (2017-02)
Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste - Hass Lauri, Bos Freek (2020-07)
Bending and Pull-Out Tests on a Novel Screw Type Reinforcement for Extrusion-Based 3D Printed Concrete - Joh Changbin, Lee Jungwoo, Bui The, Park Jihun et al. (2020-11)
Buildability and Mechanical Properties of 3D Printed Concrete - Kristombu Baduge Shanaka, Navaratnam Satheeskumar, Zidan Yousef, McCormack Tom et al. (2021-01)
Improving Performance of Additive Manufactured Concrete:
A Review on Material Mix-Design, Processing, Inter-Layer Bonding, and Reinforcing-Methods - Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete - Lee Hojae, Kim Jang-Ho, Moon Jae-Heum, Kim Won-Woo et al. (2019-08)
Correlation Between Pore Characteristics and Tensile Bond Strength of Additive Manufactured Mortar Using X-Ray Computed Tomography - Li Leo, Xiao Bofeng, Fang Z., Xiong Z. et al. (2020-11)
Feasibility of Glass-Basalt Fiber-Reinforced Seawater Coral Sand Mortar for 3D Printing - Liu Miao, Zhang Qiyun, Tan Zhendong, Wang Li et al. (2021-01)
Investigation of Steel-Wire-Mesh-Reinforcement Method for 3D Concrete Printing - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Ma Guowei, Li Zhijian, Wang Li, Bai Gang (2018-10)
Micro-Cable-Reinforced Geopolymer Composite for Extrusion-Based 3D Printing - Marchment Taylor, Sanjayan Jay (2020-09)
Bond Properties of Reinforcing Bar Penetrations in 3D Concrete Printing - Marchment Taylor, Sanjayan Jay (2019-10)
Mesh Reinforcing Method for 3D Concrete Printing - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Panda Biranchi, Lim Jian, Tan Ming (2019-02)
Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction - Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction - Perrot Arnaud, Jacquet Yohan, Rangeard Damien, Courteille Eric et al. (2020-03)
Nailing of Layers:
A Promising Way to Reinforce Concrete 3D Printing Structures - Salet Theo, Bos Freek, Wolfs Robert, Ahmed Zeeshan (2017-06)
3D Concrete Printing:
A Structural Engineering Perspective - Shakor Pshtiwan, Nejadi Shami, Paul Gavin (2019-05)
A Study into the Effect of Different Nozzles Shapes and Fiber-Reinforcement in 3D Printed Mortar - Shakor Pshtiwan, Nejadi Shami, Sutjipto Sheila, Paul Gavin et al. (2020-01)
Effects of Deposition-Velocity in the Presence-Absence of E6-Glass-Fiber on Extrusion-Based 3D Printed Mortar - Wang Weiqiang, Konstantinidis Nikolaos, Austin Simon, Buswell Richard et al. (2020-07)
Flexural Behavior of AR-Glass-Textile-Reinforced 3D Printed Concrete Beams - Weng Yiwei, Li Mingyang, Zhang Dong, Tan Ming et al. (2021-02)
Investigation of Inter-Layer Adhesion of 3D Printable Cementitious Material from the Aspect of Printing-Process - Wolfs Robert, Bos Freek, Salet Theo (2018-02)
Early-Age Mechanical Behaviour of 3D Printed Concrete:
Numerical Modelling and Experimental Testing - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion
5 Citations
- Zhao Herui, Jiang Quan, Xia Yong, Hou Dongqi et al. (2025-04)
Microbial-Induced Calcareous Precipitation Effect on Tensile Strength and Early Age Shrinkage of 3D Printed Concrete - Ahmed Hassan, Giwa Ilerioluwa, Game Daniel, Arce Gabriel et al. (2024-04)
Automated Reinforcement During Large-Scale Additive Manufacturing:
Structural-Assessment of a Dual Approach - Yang In-Hwan, Bui The, Park Jihun, Jeong Seung-Tae (2023-10)
A Feasibility Study on the Lateral Behavior of a 3D Printed Column for Application in a Wind Turbine Tower - Ahmed Ghafur (2023-01)
A Review of 3D Concrete Printing:
Materials and Process Characterization, Economic Considerations and Environmental Sustainability - Yalçınkaya Çağlar (2022-03)
Influence of Hydroxypropyl Methylcellulose Dosage on the Mechanical Properties of 3D Printable Mortars with and without Fiber-Reinforcement
BibTeX
@article{park_bui_lee_joh.2021.ILSo3PMRbPR,
author = "Jihun Park and The Quang Bui and Jungwoo Lee and Changbin Joh and In-Hwan Yang",
title = "Inter-Layer Strength of 3D Printed Mortar Reinforced by Postinstalled Reinforcement",
doi = "10.3390/ma14216630",
year = "2021",
journal = "Materials",
volume = "14",
number = "21",
}
Formatted Citation
J. Park, T. Q. Bui, J. Lee, C. Joh and I.-H. Yang, “Inter-Layer Strength of 3D Printed Mortar Reinforced by Postinstalled Reinforcement”, Materials, vol. 14, no. 21, 2021, doi: 10.3390/ma14216630.
Park, Jihun, The Quang Bui, Jungwoo Lee, Changbin Joh, and In-Hwan Yang. “Inter-Layer Strength of 3D Printed Mortar Reinforced by Postinstalled Reinforcement”. Materials 14, no. 21 (2021). https://doi.org/10.3390/ma14216630.