Skip to content

Rheological Behavior of 3D Printed Concrete (2024-05)

Influential Factors and Printability Prediction Scheme

10.1016/j.jobe.2024.109626

Gao Huaxing, Jin Lang,  Chen Yuxuan,  Chen Qian, Liu Xiaopeng,  Yu Qingliang
Journal Article - Journal of Building Engineering, No. 109626

Abstract

The rheological properties of cementitious materials play a crucial role in determining the printability for extrusion-based 3D concrete printing. This study develops data-driven machine learning (ML) models to predict two key rheological parameters - plastic viscosity (PV) and yield stress (YS) of 3D printable cementitious composites based on the mixture composition and time after water addition. A systematic experimental study is conducted by varying the contents of cement, fly ash, silica fume, sulfoaluminate cement, superplasticizer, and water-to-binder ratio, and time after water addition. The measured rheological data is used to construct a database for training predictive models including linear regression, support vector regression, random forest, extreme gradient boosting, and multi-layer perceptron neural network. The extreme gradient boosting model achieves the highest prediction accuracy with low root mean square error and all coefficients of determination exceeding 0.9 for both plastic viscosity and yield stress. Importance analysis identifies the most influential parameters affecting the rheological properties. A printability classification scheme is proposed using the model predictions by defining a printable zone of PV and YS. The data-driven framework is validated to effectively predict printability of new mixtures without trial-and-error. This study demonstrates the potential of ML models to accelerate the design and optimization of 3D printable cementitious materials.

22 References

  1. Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
    Sustainable Materials for 3D Concrete Printing
  2. Bhushan Jindal Bharat, Jangra Parveen (2023-05)
    3D Printed Concrete:
    A Comprehensive Review of Raw Material’s Properties, Synthesis, Performance, and Potential Field Applications
  3. Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
    Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite
  4. Chen Mingxu, Yang Lei, Zheng Yan, Huang Yongbo et al. (2020-04)
    Yield-Stress and Thixotropy-Control of 3D Printed Calcium-Sulfoaluminate Cement Composites with Metakaolin Related to Structural Build-Up
  5. Chen Mingxu, Yang Lei, Zheng Yan, Li Laibo et al. (2021-01)
    Rheological Behaviors and Structure Build-Up of 3D Printed Polypropylene- and Polyvinyl-Alcohol-Fiber-Reinforced Calcium-Sulphoaluminate-Cement Composites
  6. Gao Huaxing, Chen Yuxuan, Chen Qian, Yu Qingliang (2023-11)
    Thermal and Mechanical Performance of 3D Printing Functionally Graded Concrete:
    The Role of SAC on the Rheology and Phase Evolution of 3DPC
  7. Geng Songyuan, Luo Qiling, Liu Kun, Li Yunchao et al. (2023-02)
    Research Status and Prospect of Machine Learning in Construction 3D Printing
  8. Guamán-Rivera Robert, Martínez-Rocamora Alejandro, García-Alvarado Rodrigo, Muñoz-Sanguinetti Claudia et al. (2022-02)
    Recent Developments and Challenges of 3D Printed Construction:
    A Review of Research Fronts
  9. Kristombu Baduge Shanaka, Navaratnam Satheeskumar, Zidan Yousef, McCormack Tom et al. (2021-01)
    Improving Performance of Additive Manufactured Concrete:
    A Review on Material Mix-Design, Processing, Inter-Layer Bonding, and Reinforcing-Methods
  10. Liu Chao, Xiong Yuanliang, Chen Yuning, Jia Lutao et al. (2022-01)
    Effect of Sulphoaluminate Cement on Fresh and Hardened Properties of 3D Printing Foamed Concrete
  11. Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
    Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
    A Review
  12. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  13. Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
    Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
    A Detailed Review
  14. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  15. Tran Mien, Cu Yen, Le Chau (2021-10)
    Rheology and Shrinkage of Concrete Using Polypropylene-Fiber for 3D Concrete Printing
  16. Uddin Md, Mahamoudou Faharidine, Deng Boyu, Elobaid Musa Moneef et al. (2023-03)
    Prediction of Rheological Parameters of 3D Printed Polypropylene-Fiber-Reinforced Concrete by Machine Learning
  17. Wang Xianggang, Jia Lutao, Jia Zijian, Zhang Chao et al. (2022-06)
    Optimization of 3D Printing Concrete with Coarse Aggregate via Proper Mix-Design and Printing-Process
  18. Wang Qing, Ren Xiaodan, Li Jie (2023-08)
    Damage-Rheology Model for Predicting 3D Printed Concrete Buildability
  19. Wu Yun-Chen, Li Mo (2022-09)
    Effects of Early-Age Rheology and Printing Time Interval on Late-Age Fracture Characteristics of 3D Printed Concrete
  20. Xiao Jianzhuang, Hou Shaodan, Duan Zhenhua, Zou Shuai (2023-01)
    Rheology of 3D Printable Concrete Prepared by Secondary Mixing of Ready-Mix Concrete
  21. Yao Xiaofei, Lyu Xin, Sun Junbo, Wang Bolin et al. (2023-03)
    AI-Based Performance Prediction for 3D Printed Concrete Considering Anisotropy and Steam-Curing Condition
  22. Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
    A Review of the Current Progress and Application of 3D Printed Concrete

17 Citations

  1. Ding Yao, Liu Yifan, Yang Bo, Liu Jiepeng et al. (2026-01)
    Application of Artificial Intelligence Technology in 3D Concrete Printing Quality Inspection and Control:
    A State-of-the-Art Review
  2. Akgümüş Fatih, Şahin Hatice, Mardani Ali (2025-10)
    Investigation of Waste Steel Fiber Usage Rate and Length Change on Some Fresh State Properties of 3D Printable Concrete Mixtures
  3. Delavar Mohammad, Aslani Farhad, Sercombe Tim (2025-10)
    Cracking Behaviour in 3D Concrete Printed Fiber-Reinforced Cementitious Composites:
    A Review
  4. Paritala Spandana, Raj Shubham, Singh Prashant, Subramaniam Kolluru (2025-09)
    Designing 3D Printable Concrete by Integrating the Influence of Aggregate Characteristics
  5. Maroszek Marcin, Rudziewicz Magdalena, Hebda Marek (2025-09)
    Recycled Components in 3D Concrete Printing Mixes:
    A Review
  6. Chen Wenguang, Liang Long, Ye Junhong, Liu Lingfei et al. (2025-09)
    Machine Learning-Enabled Performance-Based Design of Three-Dimensional Printed Engineered Cementitious Composites
  7. Wang Suguo, Wang Xing, Yan Xueyuan, Chen Shanghong (2025-08)
    Effects of Aggregate Size and Nozzle Diameter on Printability and Mechanical Properties of 3D Printed Ferronickel Slag-GGBFS Concrete
  8. Rizzieri Giacomo, Meni Simone, Cremonesi Massimiliano, Ferrara Liberato (2025-07)
    A Particle Finite Element Method for Investigating the Influence of Material and Process Parameters in 3D Concrete Printing
  9. Gasmi Abrar, Guessasma Mohamed, Davidovits Ralph, Pélegris Christine (2025-06)
    Unveiling Additive Effects in 3D Printed Geopolymer Composites:
    A Multi-Scale Analysis Coupling Rheological Insights and CFD-Optimized Deposition
  10. Geng Songyuan, Cheng Boyuan, Long Wujian, Luo Qiling et al. (2025-05)
    Co-Driven Physics and Machine Learning for Intelligent Control in High-Precision 3D Concrete Printing
  11. An Dong, Rahman Mahfuzur, Zhang Y., Yang Chunhui (2025-05)
    Effects of Key 3D Concrete Printing Process Parameters on Layer Shape:
    Experimental Study and Smooth Particle Hydrodynamics Modelling
  12. Zhang Yuying, Zhu Xiaohong, Li Muduo, Zhang Chao et al. (2025-04)
    3D Printing Technology in Concrete Construction
  13. Gardan Julien, Hedjazi Lofti, Attajer Ali (2025-02)
    Additive Manufacturing in Construction:
    State of the Art and Emerging Trends in Civil Engineering
  14. Banijamali Kasra, Dempsey Mary, Chen Jianhua, Kazemian Ali (2025-02)
    Machine Learning Approach to Predict the Early-Age Flexural Strength of Sensor-Embedded 3D-Printed Structures
  15. Chen Meng, Li Jiahui, Zhang Tong, Zhang Mingzhong (2025-01)
    3D Printability of Recycled Steel-Fiber-Reinforced Ultra-High-Performance Concrete
  16. Zhang Yu, Yu Zhengxing, Zhang Yunsheng, Zhang Jiufu et al. (2024-12)
    Study on the Predictive Model for Continuous Build-Height of 3D Printed Concrete Based on Printability and Early Mechanical Properties
  17. Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
    Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
    Materials, Engineered Properties and Techniques for Additive Manufacturing

BibTeX
@article{gao_jin_chen_chen.2024.RBo3PC,
  author            = "Huaxing Gao and Lang Jin and Yuxuan Chen and Qian Chen and Xiaopeng Liu and Qingliang Yu",
  title             = "Rheological Behavior of 3D Printed Concrete: Influential Factors and Printability Prediction Scheme",
  doi               = "10.1016/j.jobe.2024.109626",
  year              = "2024",
  journal           = "Journal of Building Engineering",
  pages             = "109626",
}
Formatted Citation

H. Gao, L. Jin, Y. Chen, Q. Chen, X. Liu and Q. Yu, “Rheological Behavior of 3D Printed Concrete: Influential Factors and Printability Prediction Scheme”, Journal of Building Engineering, p. 109626, 2024, doi: 10.1016/j.jobe.2024.109626.

Gao, Huaxing, Lang Jin, Yuxuan Chen, Qian Chen, Xiaopeng Liu, and Qingliang Yu. “Rheological Behavior of 3D Printed Concrete: Influential Factors and Printability Prediction Scheme”. Journal of Building Engineering, 2024, 109626. https://doi.org/10.1016/j.jobe.2024.109626.