Investigation of Interlayer Bonding and Pore Characteristics in 3D-Printed High-Strength Mortar Incorporating Recycled Lightweight Aggregates (2025-02)¶
Bayat Hamid, , , Ramandi Hamed,
Journal Article - Journal of Building Engineering, No. 112183
Abstract
This study explores the incorporation of recycled lightweight aggregates i.e. fly ash cenosphere (FAC) and expanded glass (EG) into 3D-printed cementitious mortar to enhance both thermal insulation and sustainability. The novelty lies in examining how these aggregates impact the mechanical and thermal properties of 3D-printed structures, while also analyzing the pore structure, particularly at the critical interface between successive printed layers. Replacing sand with 60% FAC (C60) and 65% EG (G65) resulted in a lightweight mortar with a density of 1800 kg/m3, but also led to reductions in compressive, interlayer bonding, and flexural strength. X-ray microtomography (μ-CT) analysis revealed significant variations in porosity, particularly at the interlayer region where porosity peaked at around 33%. The thermal conductivity of the printed samples was reduced by up to 58%, driven by both the lightweight aggregates and the porous interlayer structure. Despite the weakened mechanical properties, the enhanced thermal performance of the 3D-printed samples suggests potential for sustainable, energy-efficient construction. The findings highlight the critical role of pore structure, especially at layer interfaces, in determining the strength and insulation properties of 3D-printed mortars. This work provides valuable insights into the trade-offs between strength and thermal insulation when using lightweight aggregates, offering a pathway to more energy-efficient and sustainable 3D-printed buildings with potential lower operational carbon footprints for 3D-printing construction.
¶
22 References
- Bayat Hamid, Kashani Alireza (2023-09)
Analysis of Rheological Properties and Printability of a 3D Printing Mortar Containing Silica-Fume, Hydrated Lime, and Blast-Furnace-Slag - Bhushan Jindal Bharat, Jangra Parveen (2023-05)
3D Printed Concrete:
A Comprehensive Review of Raw Material’s Properties, Synthesis, Performance, and Potential Field Applications - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Chen Yu, Çopuroğlu Oğuzhan, Rodríguez Claudia, Filho Fernando et al. (2021-02)
Characterization of Air-Void Systems in 3D Printed Cementitious Materials Using Optical Image Scanning and X-Ray Computed Tomography - Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing - Cuevas Villalobos Karla, Chougan Mehdi, Martin Falk, Ghaffar Seyed et al. (2021-05)
3D Printable Lightweight Cementitious Composites with Incorporated Waste-Glass-Aggregates and Expanded Microspheres:
Rheological, Thermal and Mechanical Properties - Heever Marchant, Plessis Anton, Kruger Jacques, Zijl Gideon (2022-01)
Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Mechtcherine Viktor, Tittelboom Kim, Kazemian Ali, Kreiger Eric et al. (2022-04)
A Roadmap for Quality-Control of Hardening and Hardened Printed Concrete - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2021-06)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete:
Correction - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Shahmirzadi Mohsen, Gholampour Aliakbar, Kashani Alireza, Ngo Tuan (2021-09)
Shrinkage Behavior of Cementitious 3D Printing Materials:
Effect of Temperature and Relative Humidity - Shahmirzadi Mohsen, Gholampour Aliakbar, Kashani Alireza, Ngo Tuan (2023-10)
Geopolymer Mortars for Use in Construction 3D Printing:
Effect of LSS, Graphene-Oxide and Nano-Clay at Different Environmental Conditions - Tao Jie-Lin, Lin Can, Luo Qiling, Long Wujian et al. (2022-07)
Leveraging Internal Curing Effect of Fly-Ash-Cenosphere for Alleviating Autogenous Shrinkage in 3D Printing - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Ting Guan, Tay Yi, Tan Ming (2021-04)
Experimental Measurement on the Effects of Recycled Glass-Cullets as Aggregates for Construction 3D Printing - Weng Yiwei, Li Mingyang, Zhang Dong, Tan Ming et al. (2021-02)
Investigation of Inter-Layer Adhesion of 3D Printable Cementitious Material from the Aspect of Printing-Process - Yang Liming, Sepasgozar Samad, Shirowzhan Sara, Kashani Alireza et al. (2022-12)
Nozzle Criteria for Enhancing Extrudability, Buildability and Inter-Layer Bonding in 3D Printing Concrete - Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
3D Printable Engineered Cementitious Composites:
Fresh and Hardened Properties - Zareiyan Babak, Khoshnevis Behrokh (2017-08)
Effects of Interlocking on Inter-Layer Adhesion and Strength of Structures in 3D Printing of Concrete
0 Citations
BibTeX
@article{baya_kari_yang_rama.2025.IoIBaPCi3PHSMIRLA,
author = "Hamid Bayat and Sagegh Karimpouli and Liming Yang and Hamed Lamei Ramandi and Alireza Kashani",
title = "Investigation of Interlayer Bonding and Pore Characteristics in 3D-Printed High-Strength Mortar Incorporating Recycled Lightweight Aggregates",
doi = "10.1016/j.jobe.2025.112183",
year = "2025",
journal = "Journal of Building Engineering",
pages = "112183",
}
Formatted Citation
H. Bayat, S. Karimpouli, L. Yang, H. L. Ramandi and A. Kashani, “Investigation of Interlayer Bonding and Pore Characteristics in 3D-Printed High-Strength Mortar Incorporating Recycled Lightweight Aggregates”, Journal of Building Engineering, p. 112183, 2025, doi: 10.1016/j.jobe.2025.112183.
Bayat, Hamid, Sagegh Karimpouli, Liming Yang, Hamed Lamei Ramandi, and Alireza Kashani. “Investigation of Interlayer Bonding and Pore Characteristics in 3D-Printed High-Strength Mortar Incorporating Recycled Lightweight Aggregates”. Journal of Building Engineering, 2025, 112183. https://doi.org/10.1016/j.jobe.2025.112183.