Skip to content

Effects of Bentonite, Diatomite and Metakaolin on the Rheological Behavior of 3D Printed Magnesium-Potassium-Phosphate-Cement Composites (2021-07)

10.1016/j.addma.2021.102184

Zhao Zhihui,  Chen Mingxu, Zhong Xu, Huang Yongbo, Yang Lei,  Zhao Piqi, Wang Shoude,  Lu Lingchao,  Cheng Xin
Journal Article - Additive Manufacturing, Vol. 46

Abstract

In this study, the effects of bentonite, diatomite, and metakaolin on the rheological behavior of 3D printed magnesium potassium phosphate cement composites (3D printed MKPCs) were investigated through characterization of the material properties, including yield stress, plastic viscosity, thixotropy, and creep. The thixotropy was studied by assessing the hysteresis area and thixotropic parameters under dynamic shear tests. The structural stability was evaluated by assessing the creep recovery, modulus of the fresh cement pastes, and deformation rate of the printed specimens. The results showed that diatomite played a key role in enhancing the thixotropy of the 3D printed MKPCs. Bentonite was found to significantly enhance the static yield stress, creep resistance, and shape stability owing to its high water absorption in the 3D printed MKPCs. Isothermal calorimetry testing showed that all additives accelerated the hydration reaction, which was confirmed by the increased compressive strength. Finally, a schematic representation of the yield stress evolution with time was proposed, revealing the beneficial effects of three additives in MKPCs during different stages of 3D printing.

19 References

  1. Chen Mingxu, Li Laibo, Wang Jiaao, Huang Yongbo et al. (2019-10)
    Rheological Parameters and Building Time of 3D Printing Sulphoaluminate-Cement-Paste Modified by Retarder and Diatomite
  2. Chen Mingxu, Li Laibo, Zheng Yan, Zhao Piqi et al. (2018-09)
    Rheological and Mechanical Properties of Admixtures-Modified 3D Printing Sulphoaluminate Cementitious Materials
  3. Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
    Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite
  4. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  5. Khalil Noura, Aouad Georges, Cheikh Khadija, Rémond Sébastien (2017-09)
    Use of Calcium-Sulfoaluminate-Cements for Setting-Control of 3D Printing Mortars
  6. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  7. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  8. Panda Biranchi, Lim Jian, Tan Ming (2019-02)
    Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction
  9. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2020-01)
    Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nano-Clay and Nucleation-Seeds for 3D Printing
  10. Panda Biranchi, Sonat Cem, Yang En-Hua, Tan Ming et al. (2020-12)
    Use of Magnesium-Silicate-Hydrate (M-S-H) Cement Mixes in 3D Printing Applications
  11. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  12. Qian Ye, Schutter Geert (2018-06)
    Enhancing Thixotropy of Fresh Cement-Pastes with Nano-Clay in Presence of Polycarboxylate-Ether Superplasticizer (PCE)
  13. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  14. Shakor Pshtiwan, Sanjayan Jay, Nazari Ali, Nejadi Shami (2017-02)
    Modified 3D Printed Powder to Cement-Based Material and Mechanical Properties of Cement Scaffold Used in 3D Printing
  15. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  16. Weng Yiwei, Ruan Shaoqin, Li Mingyang, Mo Liwu et al. (2019-06)
    Feasibility Study on Sustainable-Magnesium-Potassium-Phosphate Cement-Paste for 3D Printing
  17. Yuan Qiang, Zhou Dajun, Huang Hai, Peng Jianwei et al. (2020-06)
    Structural Build-Up, Hydration and Strength Development of Cement-Based Materials with Accelerators
  18. Yuan Qiang, Zhou Dajun, Li Baiyun, Huang Hai et al. (2017-11)
    Effect of Mineral Admixtures on the Structural Build-Up of Cement-Paste
  19. Zhang Chao, Hou Zeyu, Chen Chun, Zhang Yamei et al. (2019-09)
    Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement-Paste and Optimum Aggregate-Content

18 Citations

  1. Iqbal Imtiaz, Kasim Tala, Inqiad Waleed, Besklubova Svetlana et al. (2025-11)
    Effect of Metakaolin and Biochar Addition on the Performance of 3D Concrete Printing:
    A Meta-Analysis Approach
  2. Si Wen, Carr Liam, Zia Asad, Khan Mehran et al. (2025-08)
    Advancing 3D Printable Concrete with Nanoclays:
    Rheological and Mechanical Insights for Construction Applications
  3. Zafar Muhammad, Javadnejad Farid, Hojati Maryam (2025-07)
    Optimizing Rheological Properties of 3D Printed Cementitious Materials via Ensemble Machine Learning
  4. Zhong Jianjun, Lyu Libo, Deng Yongjie, Ma Haiyan et al. (2025-01)
    An Evaluation-Method for the Printability of Magnesium-Phosphate-Cement Concrete for Integrated Mixing-Stirring-Extrusion Rapid 3D Printing
  5. Wang Qingwei, Han Song, Liu Qi, Yang Junhao et al. (2024-12)
    Research on the 3D Printing Process and Filament Shape of Cementitious Materials in Low Gravity
  6. Zhao Zhihui, Liu Minghao, Kang Aihong, Cai Xianhuan et al. (2024-08)
    Rheology and Buildability of Sustainable 3D Printed Magnesium-Potassium-Phosphate-Cement Composites Incorporating MgO-SiO2-K2HPO4
  7. Ibrahim Kamoru, Zijl Gideon, Babafemi Adewumi (2024-08)
    Time-Dependent Behavior of 3D Printed Fiber-Reinforced Limestone-Calcined-Clay-Cement Concrete Under Sustained Loadings
  8. Robayo-Salazar Rafael, Muñoz Miguel, Vargas Armando, Gutiérrez Ruby (2024-08)
    Effects of Incorporating Bentonite, Metakaolin, Microsilica, and Calcium-Carbonate on the Rheological Properties of Portland-Cement-Based 3D Printing Inks
  9. Peng Yiming, Unluer Cise (2024-06)
    Performance and Microstructural Development of 3D Printable MgO-SiO2 Mixes Containing Magnesium-Silicate-Monohydrate
  10. Chen Mingxu, Xu Jiabin, Yuan Lianwang, Zhao Piqi et al. (2024-03)
    Use of Creep and Recovery-Protocol to Assess the Printability of Fiber-Reinforced 3D Printed White-Portland-Cement Composites
  11. Ji Xuping, Pan Tinghong, Liu Xingyao, Zhao Wenhao et al. (2023-09)
    Characterization of Thixotropic Properties of Fresh Cement‐Based Materials
  12. Razzaghian Ghadikolaee Mehrdad, Cerro-Prada Elena, Pan Zhu, Korayem Asghar (2023-04)
    Nanomaterials as Promising Additives for High-Performance 3D Printed Concrete:
    A Critical Review
  13. Liu Qiang, Jiang Quan, Huang Mojia, Xin Jie et al. (2022-10)
    The Fresh and Hardened Properties of 3D Printing Cement-Base Materials with Self-Cleaning Nano-TiO2:
    An Exploratory Study
  14. Deng Zhicong, Jia Zijian, Zhang Chao, Wang Zhibin et al. (2022-10)
    3D Printing Lightweight Aggregate Concrete Prepared with Shell-Packing-Aggregate Method:
    Printability, Mechanical Properties and Pore-Structure
  15. Jin Yuan, Xu Jiabin, Li Yali, Zhao Zhihui et al. (2022-06)
    Rheological Properties, Shape Stability and Compressive Strength of 3D Printed Colored Cement Composites Modified by Needle-Like Pigment
  16. Jiang Quan, Liu Qiang, Wu Si, Zheng Hong et al. (2022-06)
    Modification Effect of Nano-Silica and Polypropylene-Fiber for Extrusion-Based 3D Printing Concrete:
    Printability and Mechanical Anisotropy
  17. Zhao Zhihui, Chen Mingxu, Jin Yuan, Lu Lingchao et al. (2022-05)
    Rheology-Control Towards 3D Printed Magnesium-Potassium-Phosphate-Cement Composites
  18. Chen Mingxu, Li Haisheng, Yang Lei, Wang Shoude et al. (2022-03)
    Rheology and Shape-Stability-Control of 3D Printed Calcium-Sulphoaluminate-Cement Composites Containing Paper-Milling-Sludge

BibTeX
@article{zhao_chen_zhon_huan.2021.EoBDaMotRBo3PMPPCC,
  author            = "Zhihui Zhao and Mingxu Chen and Xu Zhong and Yongbo Huang and Lei Yang and Piqi Zhao and Shoude Wang and Lingchao Lu and Xin Cheng",
  title             = "Effects of Bentonite, Diatomite and Metakaolin on the Rheological Behavior of 3D Printed Magnesium-Potassium-Phosphate-Cement Composites",
  doi               = "10.1016/j.addma.2021.102184",
  year              = "2021",
  journal           = "Additive Manufacturing",
  volume            = "46",
}
Formatted Citation

Z. Zhao, “Effects of Bentonite, Diatomite and Metakaolin on the Rheological Behavior of 3D Printed Magnesium-Potassium-Phosphate-Cement Composites”, Additive Manufacturing, vol. 46, 2021, doi: 10.1016/j.addma.2021.102184.

Zhao, Zhihui, Mingxu Chen, Xu Zhong, Yongbo Huang, Lei Yang, Piqi Zhao, Shoude Wang, Lingchao Lu, and Xin Cheng. “Effects of Bentonite, Diatomite and Metakaolin on the Rheological Behavior of 3D Printed Magnesium-Potassium-Phosphate-Cement Composites”. Additive Manufacturing 46 (2021). https://doi.org/10.1016/j.addma.2021.102184.