Mechanical Properties of 3D Printed Mortar Cured by CO2 (2023-02)¶
10.1016/j.cemconcomp.2023.105009
, , , Zhang Shipeng, Poon Chi
Journal Article - Cement and Concrete Composites
Abstract
Three-dimensional (3D) printing technology has received significant attention in construction building areas, and CO2 curing has been proven to be an effective method to enhance the properties of cementitious materials and sequestrate CO2. In this study, the mechanical properties of 3D printed mortar (3DPM) which had been subjected to CO2 curing were investigated. The effects of curing time and the interlayer bonding types on the mechanical properties were discussed. The results show that appropriate CO2 curing improved the mechanical properties of hardened 3DPM, especially the early age property, and the enhancement showed significant anisotropy in different test directions. In addition, the carbonation depths of the interlayers were higher than that of printed strips. Increasing carbonation time reduced the differences between the interlayer and strips’ carbonation depths. Moreover, the carbonation extent of 3DPM was evaluated, and it was found that with an appropriate printing setting, the maximum carbonation ingression of 24% was attained in 24 h CO2 curing.
¶
15 References
- Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction - Chu Shaohua, Li Leo, Kwan Albert (2020-09)
Development of Extrudable High-Strength Fiber-Reinforced Concrete Incorporating Nano-Calcium-Carbonate - Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
A Review - Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
Hardened Properties of Layered 3D Printed Concrete with Recycled Sand - Hambach Manuel, Rutzen Matthias, Volkmer Dirk (2019-02)
Properties of 3D-Printed Fiber-Reinforced Portland Cement-Paste - Hambach Manuel, Volkmer Dirk (2017-02)
Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste - Hosseini Ehsan, Zakertabrizi Mohammad, Korayem Asghar, Xu Guanzhong (2019-03)
A Novel Method to Enhance the Inter-Layer Bonding of 3D Printing Concrete:
An Experimental and Computational Investigation - Marchment Taylor, Sanjayan Jay, Nematollahi Behzad, Xia Ming (2019-02)
Inter-Layer Strength of 3D Printed Concrete - Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Wang Li, Tian Zehao, Ma Guowei, Zhang Mo (2020-02)
Inter-Layer Bonding Improvement of 3D Printed Concrete with Polymer-Modified Mortar:
Experiments and Molecular Dynamics Studies - Wolfs Robert, Bos Freek, Salet Theo (2018-02)
Early-Age Mechanical Behaviour of 3D Printed Concrete:
Numerical Modelling and Experimental Testing - Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
Large-Scale 3D Printing Concrete Technology:
Current Status and Future Opportunities - Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete - Zhang Yu, Qiao Hongxia, Qian Rusheng, Xue Cuizhen et al. (2022-02)
Relationship Between Water-Transport Behavior and Inter-Layer Voids of 3D Printed Concrete
17 Citations
- Lim Sean, Lee Junghyun, Bawarith Nuran, Paul Suvash et al. (2025-11)
The Efficacy of Self-Curing Agents on Enhanced Internal Curing and Accelerated Carbonation with CO2-Steam Integrated 3D Concrete Printing - Zhong Kuangnan, Huang Kaiyun, Liu Zhichao, Wang Fazhou et al. (2025-10)
Dual Strategies for Enhancing Carbonation Curing in 3D Printing Steel Slag Mortars:
Material Modification and Curing Process Innovation - Xiao Jianzhuang, He Yao, Yu Miao, Wang Changhao et al. (2025-10)
Effects of Pressurized CO2 Mixing on the Properties of Mortar - Fahim Abdullah, Bukhari Syed, Khanzadeh Moradllo Mehdi (2025-09)
Additive Manufacturing of Carbonatable Ternary Cementitious Systems with Cellulose Nanocrystals - Li Qiyan, Su Anshuang, Gao Xiaojian (2025-06)
Improvement of Interlayer Performance of 3D Printable Magnesium Oxysulfate Cement-Based Materials by Carbonation Curing - Lucen Hao, Hanxiong Lyu, Huanghua Zhang, Shipeng Zhang et al. (2025-05)
Development of CO2-Activated Interface Enhancer to Improve the Interlayer Properties of 3D-Printed Concrete - Shen Jianyu, Ye Taohua, Xiao Jianzhuang, Li Shuisheng (2025-04)
Mechanical and Thermal Properties of 3D Printed Earth Concrete Solidified by Geopolymers:
A Study of Utilizing Excavated Clay - Kopitha Kirushnapillai, Rajeev Pathmanathan, Sanjayan Jay, Elakneswaran Yogarajah (2024-12)
CO2 Sequestration and Low-Carbon-Strategies in 3D Printed Concrete - Han Xiaoyu, Yan Jiachuan, Huo Yanlin, Chen Tiefeng (2024-11)
Effect of Carbonation-Curing-Regime on 3D Printed Concrete:
Compressive Strength, CO2 Uptake, and Characterization - Jin Peng, Hasany Masoud, Kohestanian Mohammad, Mehrali Mehdi (2024-10)
Micro/Nano Additives in 3D Printing Concrete:
Opportunities, Challenges, and Potential Outlook in Construction Applications - Lim Sean, Tay Yi, Paul Suvash, Lee Junghyun et al. (2024-09)
Carbon Capture and Sequestration with In-Situ CO2 and Steam Integrated 3D Concrete Printing - Ting Guan, Tay Yi, Quah Tan, Tan Ming et al. (2024-09)
Sustainable Support-Material for Overhang Printing in 3D Concrete Printing Technology - Lim Sean, Tay Yi, Amr Issam, Fadhel Bandar et al. (2024-07)
Carbon Sequestration with 3D Concrete Printing:
Potentials and Challenges - Zhong Kuangnan, Huang Kaiyun, Liu Zhichao, Wang Fazhou et al. (2024-07)
CO2-Driven Additive Manufacturing of Sustainable Steel-Slag-Mortars - Liu Qiong, Tang Huilin, Chen Kailun, Peng Bin et al. (2024-05)
Utilizing CO2 to Improve Plastic Shrinkage and Mechanical Properties of 3D Printed Mortar Made with Recycled Fine Aggregates - Tay Yi, Lim Sean, Phua Seng, Tan Ming et al. (2023-10)
Exploring Carbon-Sequestration-Potential Through 3D Concrete Printing - Wang Hao, Jiang Minghui, Hang Meiyan, Zhou Gangming et al. (2023-07)
Research on the Mechanical Properties and Frost-Resistance of Aeolian Sand 3D Printed Mortar
BibTeX
@article{wang_xiao_sun_zhan.2023.MPo3PMCbC,
author = "Dianchao Wang and Jianzhuang Xiao and Bochao Sun and Shipeng Zhang and Chi Sun Poon",
title = "Mechanical Properties of 3D Printed Mortar Cured by CO2",
doi = "10.1016/j.cemconcomp.2023.105009",
year = "2023",
journal = "Cement and Concrete Composites",
}
Formatted Citation
D. Wang, J. Xiao, B. Sun, S. Zhang and C. S. Poon, “Mechanical Properties of 3D Printed Mortar Cured by CO2”, Cement and Concrete Composites, 2023, doi: 10.1016/j.cemconcomp.2023.105009.
Wang, Dianchao, Jianzhuang Xiao, Bochao Sun, Shipeng Zhang, and Chi Sun Poon. “Mechanical Properties of 3D Printed Mortar Cured by CO2”. Cement and Concrete Composites, 2023. https://doi.org/10.1016/j.cemconcomp.2023.105009.