Skip to content

Research on the Mechanical Properties and Frost-Resistance of Aeolian Sand 3D Printed Mortar (2023-07)

10.1016/j.cscm.2023.e02332

Wang Hao, Jiang Minghui, Hang Meiyan, Zhou Gangming, Sun Mengjie, Liu Xiangju
Journal Article - Case Studies in Construction Materials, Vol. 19, No. e02332

Abstract

The purpose of this study is to use aeolian sand obtained from Inner Mongolia to partially replace quartz sand as fine aggregate to prepare 3D printed mortar to solve the scarcity problems of quartz sand resources in northwestern China. The mechanical properties tests (including flexural strength, compressive strength, tensile bond strength and axial compression tests) and frost resistance tests of cast specimens and printed mortar specimens in the X, Y and Z directions (abbreviated as CS, PS-X, PS-Y and PS-Z) were investigated. Furthermore, their microscopic morphology and pore structure parameters were compared and analyzed using scanning electron microscopy (SEM) and low field nuclear magnetic resonance (NMR), respectively. The results showed that the flexural strength and compressive strength of the samples following the inclined cross-path were superior to those following the Z-shaped path specimens. The tensile bonding strength of the CS, PS-X, PS-Y and PS-Z exhibited that F3 > F3X > F3Z > F3Y, and the peak stress was observed as F4X > F4 > F4Z > F4Y. This was attributed to the cement hydration of CS and PS-X being more sufficient than those of PS-Y and PS-Z. Furthermore, freezing-thawing cycles accelerated the degradation of aeolian sand 3D printed mortar specimens, increased their weight loss rate and porosities, as well as reduced relative dynamic modulus of elasticity. The porosities of specimens were as follows: PS-Y > PS-Z > PS-X > CS, and the porosity of PS-Y was 97.62 %, 36.07 % and 10.67 % higher than those of CS, PS-X and PS-Z, respectively. The significance of this research is to provide technical guidance and basis for the application of aeolian sand in 3D printed mortar in the future.

42 References

  1. Alabbasi Mohammad, Agkathidis Asterios, Chen Hanmei (2023-01)
    Robotic 3D Printing of Concrete Building Components for Residential Buildings in Saudi Arabia
  2. Assaad Joseph, Hamzeh Farook, Hamad Bilal (2020-05)
    Qualitative Assessment of Interfacial Bonding in 3D Printing Concrete Exposed to Frost-Attack
  3. Batikha Mustafa, Jotangia Rahul, Baaj Mohamad, Mousleh Ibrahim (2021-12)
    3D Concrete Printing for Sustainable and Economical Construction:
    A Comparative Study
  4. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  5. Chen Yidong, Zhang Yunsheng, Pang Bo, Liu Zhiyong et al. (2021-05)
    Extrusion-Based 3D Printing Concrete with Coarse Aggregate:
    Printability and Direction-Dependent Mechanical Performance
  6. Chen Yidong, Zhang Wenhua, Zhang Yunsheng, Zhang Yu et al. (2023-03)
    3D Printed Concrete with Coarse Aggregates:
    Built-In-Stirrup Permanent Concrete Formwork for Reinforced Columns
  7. Demiral Nazim, Ozkan Ekinci Mehmet, Şahin Oğuzhan, İlcan Hüseyin et al. (2022-10)
    Mechanical Anisotropy Evaluation and Bonding Properties of 3D Printable Construction and Demolition Waste-Based Geopolymer Mortars
  8. Ding Tao, Xiao Jianzhuang, Zou Shuai, Yu Jiangtao (2021-03)
    Flexural Properties of 3D Printed Fiber-Reinforced Concrete with Recycled Sand
  9. Hager Izabela, Maroszek Marcin, Mróz Katarzyna, Kęsek Rafał et al. (2022-06)
    Inter-Layer Bond Strength Testing in 3D Printed Mineral Materials for Construction Applications
  10. Han Xiaoyu, Yan Jiachuan, Liu Mingjian, Huo Liang et al. (2021-10)
    Experimental Study on Large-Scale 3D Printed Concrete Walls Under Axial Compression
  11. Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
    Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete
  12. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  13. Li Zhanzhao, Hojati Maryam, Wu Zhengyu, Piasente Jonathon et al. (2020-07)
    Fresh and Hardened Properties of Extrusion-Based 3D Printed Cementitious Materials:
    A Review
  14. Liu Jie, Lv Chun (2022-03)
    Properties of 3D Printed Polymer Fiber-Reinforced Mortars:
    A Review
  15. Liu Chenkang, Yue Songlin, Zhou Cong, Sun Honglei et al. (2021-08)
    Anisotropic Mechanical Properties of Extrusion-Based 3D Printed Layered Concrete
  16. Lowke Dirk, Dini Enrico, Perrot Arnaud, Weger Daniel et al. (2018-07)
    Particle-Bed 3D Printing in Concrete Construction:
    Possibilities and Challenges
  17. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  18. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  19. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  20. Pan Tinghong, Jiang Yaqing, He Hui, Wang Yu et al. (2021-01)
    Effect of Structural Build-Up on Inter-Layer Bond Strength of 3D Printed Cement Mortars
  21. Pan Yifan, Zhang Yulu, Zhang Dakang, Song Yuying (2021-05)
    3D Printing in Construction:
    State of the Art and Applications
  22. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  23. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  24. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  25. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  26. Seo Eun-A, Kim Won-Woo, Kim Sung-Wook, Kwon Hongkyu et al. (2023-03)
    Mechanical Properties of 3D Printed Concrete with Coarse Aggregates and Polypropylene-Fiber in the Air and Underwater Environment
  27. Shahzad Qamar, Shen Junyi, Naseem Rabia, Yao Yonggang et al. (2021-10)
    Influence of Phase-Change-Material on Concrete Behavior for Construction 3D Printing
  28. Tay Yi, Li Mingyang, Tan Ming (2019-04)
    Effect of Printing Parameters in 3D Concrete Printing:
    Printing Region and Support Structures
  29. Tian Wei, Han Nv (2018-04)
    Pore Characteristics (>0.1mm) Of Non-Air-Entrained Concrete Destroyed by Freeze-Thaw-Cycles Based on CT Scanning and 3D Printing
  30. Verian Kho, Kowaleski Scott, Carli Matthew, Bright Randall et al. (2020-02)
    Properties of 3D Printing Mortar with the Development of a 3D Construction Printing Delivery System
  31. Volpe Stelladriana, Sangiorgio Valentino, Petrella Andrea, Coppola Armando et al. (2021-08)
    Building Envelope Prefabricated with 3D Printing Technology
  32. Wan Qian, Wang Li, Ma Guowei (2022-07)
    Continuous and Adaptable Printing Path Based on Transfinite Mapping for 3D Concrete Printing
  33. Wang Li, Tian Zehao, Ma Guowei, Zhang Mo (2020-02)
    Inter-Layer Bonding Improvement of 3D Printed Concrete with Polymer-Modified Mortar:
    Experiments and Molecular Dynamics Studies
  34. Wang Dianchao, Xiao Jianzhuang, Sun Bochao, Zhang Shipeng et al. (2023-02)
    Mechanical Properties of 3D Printed Mortar Cured by CO2
  35. Wang Li, Xiao Wei, Wang Qiao, Jiang Hailong et al. (2022-07)
    Freeze-Thaw-Resistance of 3D Printed Composites with Desert Sand
  36. Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
    A Critical Review of the Use of 3D Printing in the Construction Industry
  37. Yang Shutong, Lan Tian, Sun Zhongke, Xu Mingqi et al. (2022-03)
    A Predictive Model to Determine Tensile Strength and Fracture-Toughness of 3D Printed Fiber-Reinforced Concrete Loaded in Different Directions
  38. Yang Yekai, Wu Chengqing, Liu Zhongxian, Li Jun et al. (2022-02)
    Characteristics of 3D Printing Ultra-High-Performance Fiber-Reinforced Concrete Under Impact Loading
  39. Yang Yekai, Wu Chengqing, Liu Zhongxian, Zhang Hai (2021-12)
    3D Printing Ultra-High-Performance Fiber-Reinforced Concrete under Triaxial Confining Loads
  40. Yassin Abdallah, Hamzeh Farook, Sakka Fatima (2019-12)
    Agent-Based Modeling to Optimize Workflow of Robotic Steel and Concrete 3D Printers
  41. Zhang Chao, Hou Zeyu, Chen Chun, Zhang Yamei et al. (2019-09)
    Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement-Paste and Optimum Aggregate-Content
  42. Zhang Ruo-Chen, Wang Li, Xue Xuan, Ma Guowei (2023-02)
    Environmental Profile of 3D Concrete Printing Technology in Desert Areas via Life Cycle Assessment

3 Citations

  1. Mousavi Moein, Rangaraju Prasad (2025-09)
    Freeze-Thaw Durability of 3D Printed Concrete:
    A Comprehensive Review of Mechanisms, Materials, and Testing Strategies
  2. Mim Nusrat, Shaikh Faiz, Sarker Prabir (2025-03)
    Sustainable 3D Printed Concrete Incorporating Alternative Fine Aggregates:
    A Review
  3. Dong Wei, Wang Junfeng, Hang Meiyan, Qu Shuqiang (2024-01)
    Research on Printing Parameters and Salt-Frost-Resistance of 3D Printing Concrete with Ferrochrome-Slag and Aeolian Sand

BibTeX
@article{wang_jian_hang_zhou.2023.RotMPaFRoAS3PM,
  author            = "Hao Wang and Minghui Jiang and Meiyan Hang and Gangming Zhou and Mengjie Sun and Xiangju Liu",
  title             = "Research on the Mechanical Properties and Frost-Resistance of Aeolian Sand 3D Printed Mortar",
  doi               = "10.1016/j.cscm.2023.e02332",
  year              = "2023",
  journal           = "Case Studies in Construction Materials",
  volume            = "19",
  pages             = "e02332",
}
Formatted Citation

H. Wang, M. Jiang, M. Hang, G. Zhou, M. Sun and X. Liu, “Research on the Mechanical Properties and Frost-Resistance of Aeolian Sand 3D Printed Mortar”, Case Studies in Construction Materials, vol. 19, p. e02332, 2023, doi: 10.1016/j.cscm.2023.e02332.

Wang, Hao, Minghui Jiang, Meiyan Hang, Gangming Zhou, Mengjie Sun, and Xiangju Liu. “Research on the Mechanical Properties and Frost-Resistance of Aeolian Sand 3D Printed Mortar”. Case Studies in Construction Materials 19 (2023): e02332. https://doi.org/10.1016/j.cscm.2023.e02332.