Mechanical Behavior and Permeability Properties of Sustainable and High-Performance Anisotropic Three-Dimensional Printable Concrete (2024-01)¶
Özalp Fatih
Journal Article - Frontiers of Structural and Civil Engineering
Abstract
Three-dimensional printable concrete requires further development owing to the challenges encountered, including its brittle behavior, high cement requirement for the buildability of layers, and anisotropic behavior in different directions. The aim of this study is to overcome these challenges. First, three-dimensional printable concrete mixtures were prepared using silica fume, ground blast furnace slag, and metakaolin, instead of cement, to reduce the amount of cement. Subsequently, the rheological and mechanical behaviors of these concretes were investigated. Second, three-dimensional printable concrete mixtures were prepared using 6-mm-long steel and synthetic fibers to eliminate brittleness and determine the effect of those fibers on the anisotropic behavior of the concrete. As a result of this study, it is understood that printable concretes with extremely low permeability and high buildability can be achieved using mineral additives. In addition, results showed that three-dimensional concrete samples containing short steel fibers achieve fracture energies up to 36 times greater than that of plain concrete. Meanwhile, its characteristic length values, as indicators of ductility, are 22 times higher than those of plain concrete. The weakest strength was recorded at the interfaces between layers. The bending and splitting tensile strengths of three-dimensional printed plain concrete samples were 15% and 19% lower than those of casted samples, respectively. However, the addition of fibers improved the mechanical strength of the interfaces significantly.
¶
45 References
- Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
Sustainable Materials for 3D Concrete Printing - Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers - Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
Additive Manufacturing of Concrete in Construction:
Potentials and Challenges of 3D Concrete Printing - Chen Yu, Jansen Koen, Zhang Hongzhi, Rodríguez Claudia et al. (2020-07)
Effect of Printing-Parameters on Inter-Layer Bond Strength of 3D Printed Limestone-Calcined-Clay-Based Cementitious Materials:
An Experimental and Numerical Study - Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
Hardened Properties of Layered 3D Printed Concrete with Recycled Sand - Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers - Hambach Manuel, Möller Hendrik, Neumann Thomas, Volkmer Dirk (2016-08)
Portland-Cement-Paste with Aligned Carbon-Fibers Exhibiting Exceptionally High Flexural Strength (>100 MPa) - Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete - Holt Camille, Edwards Laurie, Keyte Louise, Moghaddam Farzad et al. (2019-02)
Construction 3D Printing - Ji Guangchao, Ding Tao, Xiao Jianzhuang, Du Shupeng et al. (2019-05)
A 3D Printed Ready-Mixed Concrete Power-Distribution Substation:
Materials and Construction Technology - Kaszyńska Maria, Skibicki Szymon, Hoffmann Marcin (2020-12)
3D Concrete Printing for Sustainable Construction - Keita Emmanuel, Bessaies-Bey Hela, Zuo Wenqiang, Belin Patrick et al. (2019-06)
Weak Bond Strength Between Successive Layers in Extrusion-Based Additive Manufacturing:
Measurement and Physical Origin - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Liu Zhixin, Li Mingyang, Weng Yiwei, Wong Teck et al. (2018-12)
Mixture-Design-Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material-Printing - Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete - Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing - Malaeb Zeina, Sakka Fatima, Hamzeh Farook (2019-02)
3D Concrete Printing:
Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups - Marchment Taylor, Sanjayan Jay (2018-09)
Method of Enhancing Inter-Layer Bond Strength in 3D Concrete Printing - Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content - Nematollahi Behzad, Xia Ming, Sanjayan Jay (2017-07)
Current Progress of 3D Concrete Printing Technologies - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Nerella Venkatesh, Mechtcherine Viktor (2019-02)
Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D) - Panda Biranchi, Bhagath Singh Gangapatnam, Unluer Cise, Tan Ming (2019-02)
Synthesis and Characterization of One-Part Geopolymers for Extrusion-Based 3D Concrete Printing - Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
Additive Manufacturing of Geopolymer for Sustainable Built Environment - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Panda Biranchi, Tan Ming (2018-11)
Rheological Behavior of High-Volume Fly-Ash Mixtures Containing Micro-Silica for Digital Construction Application - Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing - Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
A Review of 3D Concrete Printing Systems and Materials Properties:
Current Status and Future Research Prospects - Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
Steel-Fiber-Reinforced 3D Printed Concrete:
Influence of Fiber Sizes on Mechanical Performance - Putten Jolien, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2021-08)
Development of 3D Printable Cementitious Composites with the Incorporation of Polypropylene Fibers - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
Mechanical Characterization of 3D Printable Concrete - Rehman Atta, Kim Jung-Hoon (2021-07)
3D Concrete Printing:
A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics - Sanjayan Jay, Nematollahi Behzad (2019-02)
3D Concrete Printing for Construction Applications - Skibicki Szymon, Kaszyńska Maria, Wahib Nawid, Techman Mateusz et al. (2020-07)
Properties of Composite Modified with Limestone-Powder for 3D Concrete Printing - Suiker Akke, Wolfs Robert, Lucas Sandra, Salet Theo (2020-06)
Elastic Buckling and Plastic Collapse During 3D Concrete Printing - Tay Yi, Panda Biranchi, Ting Guan, Ahamed N. et al. (2020-10)
3D Printing for Sustainable Construction - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Ting Guan, Tay Yi, Tan Ming (2021-04)
Experimental Measurement on the Effects of Recycled Glass-Cullets as Aggregates for Construction 3D Printing - Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
Digital Concrete:
Opportunities and Challenges - Wolfs Robert, Bos Freek, Salet Theo (2018-02)
Early-Age Mechanical Behaviour of 3D Printed Concrete:
Numerical Modelling and Experimental Testing - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Wolfs Robert, Bos Freek, Salet Theo (2019-06)
Triaxial Compression Testing on Early-Age Concrete for Numerical Analysis of 3D Concrete Printing - Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing - Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
Mix-Design Concepts for 3D Printable Concrete:
A Review - Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
BibTeX
@article{ozal.2024.MBaPPoSaHPATDPC,
author = "Fatih Özalp",
title = "Mechanical Behavior and Permeability Properties of Sustainable and High-Performance Anisotropic Three-Dimensional Printable Concrete",
doi = "10.1007/s11709-023-0962-1",
year = "2024",
journal = "Frontiers of Structural and Civil Engineering",
}
Formatted Citation
F. Özalp, “Mechanical Behavior and Permeability Properties of Sustainable and High-Performance Anisotropic Three-Dimensional Printable Concrete”, Frontiers of Structural and Civil Engineering, 2024, doi: 10.1007/s11709-023-0962-1.
Özalp, Fatih. “Mechanical Behavior and Permeability Properties of Sustainable and High-Performance Anisotropic Three-Dimensional Printable Concrete”. Frontiers of Structural and Civil Engineering, 2024. https://doi.org/10.1007/s11709-023-0962-1.