Skip to content

Stress-Cognizant 3D Printing of Free-Form Concrete Structures (2021-02)

10.1016/j.jobe.2021.102221

 Lim Jian,  Zhang Xu,  Ting Guan, Pham Quang-Cuong
Journal Article - Journal of Building Engineering, Vol. 39

Abstract

3D printing enables engineers to design and manufacture geometrically complex structures. As 3D printing technology affords design freedom, it also brings along new challenges. One common property of classical 3D printing is the anisotropy arising from the filament-wise 3D printing process. This anisotropy reduces the load bearing capabilities of the 3D printed part when loaded in its weaker axes, that is the directions orthogonal to the filament. Conversely, by designing the 3D printing path through analyses of its mechanical constraints, the 3D printed part may be strengthened and printed such that it carries the majority of the load in its strongest axis, parallel to the filament (T1), thereby increasing its load-carrying capabilities. We experimentally investigated this idea by designing and printing several concrete samples following two strategies: (i) the classical strategy consisting of parallel rectilinear paths irrespective of the load distribution, and (ii) our proposed strategy consisting of paths that are as much parallel as possible to the principal stress lines. We then subjected the samples to mechanical testing. The test results confirmed that the proposed printing strategy significantly improved mechanical characteristics. Cracking patterns were also observed and discussed.

22 References

  1. Bester Frederick, Heever Marchant, Kruger Jacques, Zijl Gideon (2020-11)
    Reinforcing Digitally Fabricated Concrete:
    A Systems Approach Review
  2. Bos Freek, Ahmed Zeeshan, Jutinov Evgeniy, Salet Theo (2017-11)
    Experimental Exploration of Metal-Cable as Reinforcement in 3D Printed Concrete
  3. Farina Ilenia, Fabbrocino F., Carpentieri G., Modano M. et al. (2015-12)
    On the Reinforcement of Cement Mortars through 3D Printed Polymeric- and Metallic-Fibers
  4. Hambach Manuel, Rutzen Matthias, Volkmer Dirk (2019-02)
    Properties of 3D-Printed Fiber-Reinforced Portland Cement-Paste
  5. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  6. Kruger Jacques, Zijl Gideon (2020-10)
    A Compendious Review on Lack-of-Fusion in Digital Concrete Fabrication
  7. Lim Jian, Panda Biranchi, Pham Quang-Cuong (2018-05)
    Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel-Cable-Reinforcement
  8. Lim Jian, Weng Yiwei, Pham Quang-Cuong (2019-10)
    3D Printing of Curved Concrete Surfaces Using Adaptable Membrane Formwork
  9. Marchment Taylor, Sanjayan Jay, Nematollahi Behzad, Xia Ming (2019-02)
    Inter-Layer Strength of 3D Printed Concrete
  10. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  11. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  12. Sakka Fatima, Assaad Joseph, Hamzeh Farook, Nakhoul Charbel (2019-07)
    Thixotropy and Interfacial Bond Strengths of Polymer-Modified Printed Mortars
  13. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  14. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  15. Tiryaki Mehmet, Zhang Xu, Pham Quang-Cuong (2019-11)
    Printing-While-Moving:
    A New Paradigm for Large-Scale Robotic 3D Printing
  16. Vantyghem Gieljan, Corte Wouter, Shakour Emad, Amir Oded (2020-01)
    3D Printing of a Post-Tensioned Concrete Girder Designed by Topology-Optimization
  17. Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
    Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing
  18. Weng Yiwei, Qian Shunzhi, He Lewei, Li Mingyang et al. (2018-05)
    3D Printable High-Performance Fiber-Reinforced Cementitious Composites For Large-Scale Printing
  19. Zareiyan Babak, Khoshnevis Behrokh (2017-08)
    Effects of Interlocking on Inter-Layer Adhesion and Strength of Structures in 3D Printing of Concrete
  20. Zareiyan Babak, Khoshnevis Behrokh (2018-05)
    Effects of Mixture Ingredients on Extrudability of Concrete in Contour Crafting
  21. Zhang Xu, Li Mingyang, Lim Jian, Weng Yiwei et al. (2018-08)
    Large-Scale 3D Printing by a Team of Mobile Robots
  22. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete

12 Citations

  1. Liao Minmao, Sun Xiao, Chen Zhaohui (2026-01)
    Simultaneous Topology and Path Optimization for 3D Concrete Printing Based on Discrete Frame Structures
  2. Najm-Eddine Asmae, Abouelmajd Mohamed, Najm-Eddine Youssef, Erritali Ilham et al. (2025-11)
    Topological Optimization in 3D Concrete Printing Structures:
    A Review
  3. Mahdy Deena, Dara Seni, Abdelrahim Marwa (2025-06)
    Evaluating Structure Stability of Self-Supporting 3D Printed Earth-Based Cantilevers Using Robotic ARM
  4. Ding Tao, Peng Zechen, Dong Haining (2025-05)
    Mechanical Properties of CFRP Grid Reinforced 3D Printed Concrete Arch Structures
  5. Hassan Amer, Alomayri Thamer, Noaman Mohammed, Zhang Chunwei (2025-01)
    3D Printed Concrete for Sustainable Construction:
    A Review of Mechanical Properties and Environmental Impact
  6. Wu Mushuang, Wang Zixiao, Chen Yuxuan, Zhu Mengyu et al. (2024-11)
    Effect of Steel-Slag on Rheological and Mechanical Properties of Sulfoaluminate-Cement-Based Sustainable 3D Printing Concrete
  7. Lim Sean, Tan Ming (2024-10)
    A Rheological Model for Concrete Additive Manufacturing
  8. Lu Yue, Xiao Jianzhuang, Li Yan (2024-03)
    3D Printing Recycled Concrete Incorporating Plant-Fibers:
    A Comprehensive Review
  9. Jiang Xiongzhi, Li Yujia, Yang Zhe, Li Yangbo et al. (2024-02)
    Harnessing Path-Optimization to Enhance the Strength of Three-Dimensional Printed Concrete
  10. Yang Wenwei, Wang Li, Hu Yuanyuan, Sanjayan Jay et al. (2023-10)
    An Integrated Topology-Optimization Method Including Manufacturing-Constraints for 3D Printed Fiber-Reinforced Concrete Structures
  11. Nodehi Mehrab, Omer Liam, Asiabanpour Bahram, Ozbakkaloglu Togay (2023-04)
    A Novel Lightweight Mechanism for 3D Printing of Cementitious Materials
  12. Shen Yuhang, Lin Li, Wei Shengjie, Yan Jie et al. (2022-12)
    Research on the Preparation and Mechanical Properties of Solidified 3D Printed Concrete Materials

BibTeX
@article{lim_zhan_ting_pham.2021.SC3PoFFCS,
  author            = "Jian Hui Lim and Xu Zhang and Guan Heng Andrew Ting and Quang-Cuong Pham",
  title             = "Stress-Cognizant 3D Printing of Free-Form Concrete Structures",
  doi               = "10.1016/j.jobe.2021.102221",
  year              = "2021",
  journal           = "Journal of Building Engineering",
  volume            = "39",
}
Formatted Citation

J. H. Lim, X. Zhang, G. H. A. Ting and Q.-C. Pham, “Stress-Cognizant 3D Printing of Free-Form Concrete Structures”, Journal of Building Engineering, vol. 39, 2021, doi: 10.1016/j.jobe.2021.102221.

Lim, Jian Hui, Xu Zhang, Guan Heng Andrew Ting, and Quang-Cuong Pham. “Stress-Cognizant 3D Printing of Free-Form Concrete Structures”. Journal of Building Engineering 39 (2021). https://doi.org/10.1016/j.jobe.2021.102221.