Skip to content

Development of 3D Printable Cementitious Composites with the Incorporation of Polypropylene Fibers (2021-08)

10.3390/ma14164474

 van der Putten Jolien,  Rahul Attupurathu,  de Schutter Geert,  van Tittelboom Kim
Journal Article - Materials, Vol. 14, Iss. 16

Abstract

Similar to conventional cast concrete, printable materials require reinforcement to counteract their low tensile strength. However, as traditional reinforcement strategies are not commonly used in 3D print applications, fiber reinforcement can serve as an alternative. This study aims to assess the influence of different polypropylene fiber lengths (3 and 6 mm, denoted as M3 and M6, respectively) and dosages (0.1 and 0.3% volume fraction) on the workability, pore structure, mechanical and shrinkage behavior of 3D printable cementitious materials. Fresh state observations revealed that the addition of a higher fiber volume decreased the workability of the material, irrespective of the fiber length as a result of the lower water film thickness (WFT). In hardened state, a marginal increase in total porosity could be observed when adding fibers to the mix composition. In addition, the flexural strength was found to increase with the addition of fibers, while no significant difference was observed in compressive strength. The increase in flexural strength was more pronounced in the case of longer-sized M6 fibers. Finally, the total drying shrinkage behavior was evaluated using mold-cast prisms. The addition of M6 fibers showed no beneficial effect in reducing total free shrinkage, while a reduction in total free shrinkage was observed when using M3 fibers.

15 References

  1. Chu Shaohua, Li Leo, Kwan Albert (2020-09)
    Development of Extrudable High-Strength Fiber-Reinforced Concrete Incorporating Nano-Calcium-Carbonate
  2. Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2019-03)
    An Approach to Develop Printable Strain-Hardening Cementitious Composites
  3. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  4. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  5. Li Leo, Xiao Bofeng, Fang Z., Xiong Z. et al. (2020-11)
    Feasibility of Glass-Basalt Fiber-Reinforced Seawater Coral Sand Mortar for 3D Printing
  6. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  7. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  8. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
    Extrusion-Based Concrete 3D Printing from a Material Perspective:
    A State of the Art Review
  9. Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
    Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content
  10. Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
    Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction
  11. Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
    Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing
  12. Putten Jolien, Deprez Maxim, Cnudde Veerle, Schutter Geert et al. (2019-09)
    Microstructural Characterization of 3D Printed Cementitious Materials
  13. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
    Mechanical Characterization of 3D Printable Concrete
  14. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  15. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction

33 Citations

  1. Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
    Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
    A Comprehensive Review
  2. Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Mustafa Ali et al. (2025-12)
    Passive Determination of Anisotropic Compressive Strength of 3D Printed Concrete Using Multiple Neural Networks Enhanced with Explainable Machine Learning (XML)
  3. Albostami Asad, Mohammad Malek, Ismael Bashar, Hamd Rwayda (2025-10)
    Optimized Strength Predictions for 3D Printed Fiber-Reinforced Concrete:
    Machine Learning-Driven Insights
  4. Pal Abhipsa, Wan-Wendner Lin (2025-10)
    3D Concrete Printing and Infill Patterns of Energy Efficient Structural Wall Elements
  5. Varghese Renny, Rangel Bárbara, Maia Lino (2025-10)
    Strength, Structure, and Sustainability in 3D-Printed Concrete Using Different Types of Fiber Reinforcements
  6. Delavar Mohammad, Aslani Farhad, Sercombe Tim (2025-10)
    Cracking Behaviour in 3D Concrete Printed Fiber-Reinforced Cementitious Composites:
    A Review
  7. Lu Qianyang, Mei Song, Ateah Ali, Alsubeai Ali et al. (2025-08)
    Investigating the Strength Performance of 3D Printed Fiber-Reinforced Concrete Using Applicable Predictive Models
  8. Khodadadi Nima, Roghani Hossein, Caso Francisco, Kenawy El‐Sayed et al. (2025-06)
    Machine Learning Approach for the Flexural Strength of 3D‐Printed Fiber‐reinforced Concrete Based on the Meta‐heuristic Algorithm
  9. Alizamir Meysam, Kim Sungwon, Ikram Rana, Ahmed Kaywan et al. (2025-06)
    A Reliable Hybrid Extreme Learning Machine-Metaheuristic Framework for Enhanced Strength Prediction of 3D-Printed Fiber-Reinforced Concrete
  10. Hopkins Ben, Si Wen, Khan Mehran, McNally Ciaran (2025-06)
    Recent Advancements in Polypropylene Fiber-Reinforced 3D-Printed Concrete:
    Insights into Mix Ratios, Testing Procedures, and Material Behaviour
  11. Su Yanli, Wu Chang, Shang Jiaqi, Zhang Pu (2025-06)
    Mechanical Properties of 3D-Printed High-Ductility Cementitious Composite with Sulphoaluminate Cement and Modified Crumb Rubber
  12. Asif Usama (2025-05)
    Comparative Analysis of Evolutionary Computational Methods for Predicting Mechanical Properties of Fiber-Reinforced 3D Printed Concrete
  13. Sakhare Vishakha, Najar Mohamed, Deshpande Sachin (2024-12)
    Printing Performance of 3D Printed Geopolymer Through Pumpability, Extrudability, Buildability Properties:
    A Review
  14. Li L., Fang Z., Chu S., Kwan Albert (2024-11)
    Improving Mechanical Properties of 3D Printed Mortar by Exploiting Synergistic Effects of Fly-Ash-Microsphere and Nano-Silica
  15. Arif Muhammad, Jan Faizullah, Rezzoug Aïssa, Afridi Muhammad et al. (2024-11)
    Data-Driven Models for Predicting Compressive Strength of 3D Printed Fiber-Reinforced Concrete Using Interpretable Machine Learning Algorithms
  16. Tarhan Yeşim, Tarhan İsmail, Jacquet Yohan, Perrot Arnaud (2024-09)
    Mechanical Behavior of 3D Printed and Textile-Reinforced Eco-Friendly Composites
  17. Parmigiani Silvia, Falliano Devid, Moro Sandro, Ferro Giuseppe et al. (2024-06)
    3D Printed Multi-Functional Foamed Concrete Building Components:
    Material-Properties, Component Design, and 3D Printing Application
  18. Capêto Ana, Jesus Manuel, Uribe Braian, Guimarães Ana et al. (2024-05)
    Building a Greener Future:
    Advancing Concrete Production Sustainability and the Thermal Properties of 3D Printed Mortars
  19. Tao Yaxin, Yuan Yong (2024-05)
    3D Concrete Printing for Tunnel Linings:
    Opportunities and Challenges
  20. Uddin Md, Ye Junhong, Haque M., Yu Kequan et al. (2024-04)
    A Novel Compressive Strength Estimation Approach for 3D Printed Fiber-Reinforced Concrete:
    Integrating Machine Learning and Gene Expression Programming
  21. Özalp Fatih (2024-01)
    Mechanical Behavior and Permeability Properties of Sustainable and High-Performance Anisotropic Three-Dimensional Printable Concrete
  22. Khan Shayan, Ghazi Syed, Amjad Hassan, Imram Muhammad et al. (2023-12)
    Emerging Horizons in 3D Printed Cement-Based Materials with Nano-Material-Integration:
    A Review
  23. Alyami Mana, Khan Majid, Javed Muhammad, Ali Mujahid et al. (2023-12)
    Application of Metaheuristic Optimization Algorithms in Predicting the Compressive Strength of 3D Printed Fiber-Reinforced Concrete
  24. Alyami Mana, Khan Majid, Fawad Muhammad, Nawahz R. et al. (2023-11)
    Predictive Modeling for Compressive Strength of 3D Printed Fiber-Reinforced Concrete Using Machine Learning Algorithms
  25. Li Leo, Xiao Bofeng, Cheng Cong-Mi, Xie Hui-Zhu et al. (2023-09)
    Adding Glass-Fibers to 3D Printable Mortar:
    Effects on Printability and Material-Anisotropy
  26. Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
    Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
    A Detailed Review
  27. Ali Ammar, Riaz Raja, Malik Umair, Abbas Syed et al. (2023-06)
    Machine-Learning-Based Predictive-Model for Tensile and Flexural Strength of 3D Printed Concrete
  28. Uddin Md, Ye Junhong, Deng Boyu, Li Lingzhi et al. (2023-04)
    Interpretable Machine Learning for Predicting the Strength of 3D Printed Fiber-Reinforced Concrete
  29. Rajeev Pathmanathan, Ramesh Akilesh, Navaratnam Satheeskumar, Sanjayan Jay (2023-04)
    Using Fiber Recovered from Face Mask Waste to Improve Printability in 3D Concrete Printing
  30. Zhang Hanghua, Xiao Jianzhuang, Duan Zhenhua, Zou Shuai et al. (2022-06)
    Effects of Printing Paths and Recycled Fines on Drying Shrinkage of 3D Printed Mortar
  31. Elistratkin Michail, Alfimova Nataliya, Podgorniy Daniil, Olisov Andrey et al. (2022-05)
    Influence of Equipment Operation Parameters on the Characteristics of a Track Produced with Construction 3D Printing
  32. Uhlík Adam, Buch Mário, Unčík Stanislav (2022-04)
    Effecting the Rheological Properties of Composites for 3D Printing Technology in Construction
  33. Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
    3D Printable Concrete with Natural and Recycled Coarse Aggregates:
    Rheological, Mechanical and Shrinkage Behavior

BibTeX
@article{putt_rahu_schu_titt.2021.Do3PCCwtIoPF,
  author            = "Jolien van der Putten and Attupurathu Vijayan Rahul and Geert de Schutter and Kim van Tittelboom",
  title             = "Development of 3D Printable Cementitious Composites with the Incorporation of Polypropylene Fibers",
  doi               = "10.3390/ma14164474",
  year              = "2021",
  journal           = "Materials",
  volume            = "14",
  number            = "16",
}
Formatted Citation

J. van der Putten, A. V. Rahul, G. de Schutter and K. van Tittelboom, “Development of 3D Printable Cementitious Composites with the Incorporation of Polypropylene Fibers”, Materials, vol. 14, no. 16, 2021, doi: 10.3390/ma14164474.

Putten, Jolien van der, Attupurathu Vijayan Rahul, Geert de Schutter, and Kim van Tittelboom. “Development of 3D Printable Cementitious Composites with the Incorporation of Polypropylene Fibers”. Materials 14, no. 16 (2021). https://doi.org/10.3390/ma14164474.