Influence of Printing Interval on the Imbibition Behavior of 3D Printed Foam-Concrete for Sustainable and Green Building Applications (2024-09)¶
Liu Xiaoshuang, Li Shiming, Duan Yanjun, Du Zhiqin, Zuo Xiaobao, Dong Jianjun, Cheng Helan
Journal Article - Sustainability, Vol. 16, Iss. 17, No. 7841
Abstract
Foam concrete is highly valued as a sustainable cement-based material, but the development of 3D-printed foam concrete (3DPFC) has remained constrained. This study investigated the influence of printing interval on the microstructure and imbibition behavior of 3DPFC. The results revealed that horizontal interlayers are broader compared to vertical interlayers, leading to more significant imbibition. For X-oriented 3DPFC, the vertical interlayer was rapidly occupied by water after imbibition, forming an elliptical moisture profile. For Y-oriented 3DPFC, the moisture profile appeared more convoluted, mainly surrounding the horizontal interlayers but shifting at intersections with the vertical interlayers. In Z-oriented 3DPFC, where only tight horizontal interlayers were present, interlayer imbibition was almost negligible. Additionally, when the printing interval was less than 15 min, imbibition was primarily restricted to the top filament since the bottom filament was compacted by the filament above. Conversely, with a printing interval longer than 15 min, the bottom filament hardened before the setting of the top filament. This allowed the surface of the bottom filament to be compacted by the top filament, resulting in a dense interlayer that offers better resistance against imbibition compared to the matrix of 3DPFC. This work contributes to the advancement of green building technologies by providing insights into optimizing the 3D printing process for foam concrete, thereby enhancing its structural performance without compromising the designated air content and consistency of the foam concrete, facilitating a more efficient utilization of materials and a reduction in overall material consumption.
¶
19 References
- Boddepalli Uday, Gandhi Indu, Panda Biranchi (2024-05)
Synergistic Effect of Fly-Ash and Polyvinyl-Alcohol-Fibers in Improving Stability, Rheology, and Mechanical Properties of 3D Printable Foam-Concrete - Cho Seung, Rooyen Algurnon, Kearsley Elsabe, Zijl Gideon (2021-12)
Foam Stability of 3D Printable Foamed Concrete - Han Xiaoyu, Yan Jiachuan, Chen Tiefeng, Tang Boyang et al. (2023-07)
Plastic Shrinkage of 3D Printed Concrete Under Different Self-Weight of Upper Layers - Huang Xin, Yang Weihao, Song Fangnian, Zou Jiuqun (2022-04)
Study on the Mechanical Properties of 3D Printing Concrete Layers and the Mechanism of Influence of Printing Parameters - Liu Huawei, Liu Chao, Bai Guoliang, Wu Yiwen et al. (2022-04)
Influence of Pore-Defects on the Hardened Properties of 3D Printed Concrete with Coarse Aggregate - Liu Chao, Wang Zhihui, Wu Yiwen, Liu Huawei et al. (2023-02)
3D Printing Concrete with Recycled Sand:
The Influence Mechanism of Extruded Pore-Defects on Constitutive Relationship - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Pan Tinghong, Jiang Yaqing, He Hui, Wang Yu et al. (2021-01)
Effect of Structural Build-Up on Inter-Layer Bond Strength of 3D Printed Cement Mortars - Pasupathy Kirubajiny, Ramakrishnan Sayanthan, Sanjayan Jay (2022-07)
Enhancing the Properties of Foam-Concrete 3D Printing Using Porous Aggregates - Putten Jolien, Azima M., Heede Philip, Mullem T. et al. (2020-06)
Neutron-Radiography to Study the Water-Ingress via the Inter-Layer of 3D Printed Cementitious Materials for Continuous Layering - Putten Jolien, Volder Melissa, Heede Philip, Deprez Maxim et al. (2022-03)
Transport Properties of 3D Printed Cementitious Materials with Prolonged Time-Gap Between Successive Layers - Schröfl Christof, Nerella Venkatesh, Mechtcherine Viktor (2018-09)
Capillary Water Intake by 3D Printed Concrete Visualised and Quantified by Neutron Radiography - Shi Yifan, Jia Lutao, Jia Zijian, Ma Lei et al. (2024-03)
Early-Age Inhomogeneous Deformation of 3D Printed Concrete:
Characteristics and Influences of Superplasticizer and Water-Binder Ratio - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Xu Yanqun, Yuan Qiang, Li Zemin, Shi Caijun et al. (2021-09)
Correlation of Inter-Layer Properties and Rheological Behaviors of 3DPC with Various Printing Time Intervals - Zhang Yu, Qiao Hongxia, Qian Rusheng, Xue Cuizhen et al. (2022-02)
Relationship Between Water-Transport Behavior and Inter-Layer Voids of 3D Printed Concrete - Zhang Yu, Yang Lin, Qian Rusheng, Liu Guojian et al. (2023-07)
Inter-Layer Adhesion of 3D Printed Concrete:
Influence of Layer Stacked Vertically - Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2022-08)
Evaluation of Aggregates, Fibers and Voids-Distribution in 3D Printed Concrete - Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2022-12)
Influence of the Pore Feature on the Water-Uptake in 3D Printed Concrete
3 Citations
- Pemas Sotirios, Baliakas Dimitrios, Pechlivani Eleftheria, Stefanidou Maria (2025-07)
Mechanical Properties of Bio-Printed Mortars with Bio-Additives for Green and Sustainable Construction - Liang Jingwen, Zeng Zuo, Wang Penglin, Wang Zhongxu et al. (2025-07)
Emergency Response Mobile 3D Printing System:
A Case Study in Rapid Manufacturing of Polyurethane Foam Bridges - Rudziewicz Magdalena, Maroszek Marcin, Hutyra Adam, Góra Michał et al. (2025-02)
Influence of Foaming Agents and Stabilizers on Porosity in 3D Printed Foamed Concrete
BibTeX
@article{liu_li_duan_du.2024.IoPIotIBo3PFCfSaGBA,
author = "Xiaoshuang Liu and Shiming Li and Yanjun Duan and Zhiqin Du and Xiaobao Zuo and Jianjun Dong and Helan Cheng",
title = "Influence of Printing Interval on the Imbibition Behavior of 3D Printed Foam-Concrete for Sustainable and Green Building Applications",
doi = "10.3390/su16177841",
year = "2024",
journal = "Sustainability",
volume = "16",
number = "17",
pages = "7841",
}
Formatted Citation
X. Liu, “Influence of Printing Interval on the Imbibition Behavior of 3D Printed Foam-Concrete for Sustainable and Green Building Applications”, Sustainability, vol. 16, no. 17, p. 7841, 2024, doi: 10.3390/su16177841.
Liu, Xiaoshuang, Shiming Li, Yanjun Duan, Zhiqin Du, Xiaobao Zuo, Jianjun Dong, and Helan Cheng. “Influence of Printing Interval on the Imbibition Behavior of 3D Printed Foam-Concrete for Sustainable and Green Building Applications”. Sustainability 16, no. 17 (2024): 7841. https://doi.org/10.3390/su16177841.